DR. HOMI BHABHA STATE UNIVERSITY

Program - M. Sc.

Course -Physics

Syllabus for Semesters - III, IV

(Credit Based Semester and Grading System With effect from the academic year 2021-2022)

Semester-III

	Course Code: MSPHCC301T	Course Title: Statistical Mechanics	
	Course Credit: 4	Total Contact Hours: 60 Hours	
Sr. No.	Course Contents (Topics &Subtopics)		
1	Fundamentals of Statistical Mechanics: A Brief Revision of the Laws of Thermodynamics. Thermodynamical Work for Magnetic, Dielectric, Elastic Systems. Fundamentals of Statistical Mechanics: Microstates of a System- Principle of Equal Apriori Probability, Phase Space, Quantization of Phase Space, Concept of Ensemble, Ensemble Average, Density Distribution Function in Phase Space, Liouville's Theorem, Distributions Theory (One of Maxwell Boltzman (MB), Fermi- Dirac(FD), Bose-Einstein(be) Distributions), Classical Limit, Entropy Drachability, Entropy of a two Lavel Systems		
2	 Probability, Entropy of a two Level System. Unit II Ensembles: Microcanonical Ensemble (MCE), Thermodynamics in MCE, Entropy of an Ideal Gas in MCE, Gibbs Paradox, Sackur Tetrode Equation, Canonical Ensemble (CE): Thermodynamics in Ce, Ideal Gas in CE, Maxwell's Velocity Distribution: Equipartition Energy Theorem, Grand Canonical Ensemble (GCE), Thermodynamics in GCE, Ideal Gas in GCE, Fermi – Dirac Bose-Einstein Distribution Functions from Grand Canonical Partition Function. 		
3	Unit IIIBose Systems:Equation of State for Ideal BE FD Gases, Photons, Planks Distribution Law,Phonons, Specific Heat of Solids, Einstein Debye's Theories, Bose EinsteinCondensation, Liquid He-two Fluid Model, Phonons: Rotons – Super		
4	Fluidity.Unit IVFermi Systems:Ideal Fermi Gas – Free Electron Model, Electronic Specific Heat, Thermionic Emission, Pauli Paramagnetism: Lau Diamagnetism, White Dwarfs, Boltzman Transport Equation: Electrical Conductivity, Thermal Conductivity – Wiedermann,– Franz Law , Non-Equilibrium Semiconductors, Electron-Hole Recombination, Classical, Hall Effect, Quantum Hall Effect. Ising Model its 1-D Solution.		15 Hours
	 International). 3. Statistical Mechanics, Kers 4. Statistical Mechanics – R.k India). 5. Statistical Physics of Partic 6. Statistical Thermal Physics University Press). 	garwal & Melvin Eisner (New Age on Huang (John Wiley & Sons). K. Srivastava & J. Ashok (Prentice-Hall of les, Kardar (Cambridge University Press). sics, Gould & Tobochnik (Princeton atistical Mechanics Thermodynamics,	

8. Thermodynamics Statistical Mechanics, Greiner, Neise, Stocker,	
Springer, 2010.	
9. Statistical Mechanics, Reif.	
10. Statistical Physics (Part 1), L.D. Lau E. M. Lifhsitz (Elsevier).	
Course Outcomes:	
From This Course Students will Learn the Basics of Thermodynamics, its	
History, Application. Students will Understand Concepts of Ensemble Used	
for Statistical Application.	

	Course Code:	Course Title:	
	MSPHCC302T Course Credit: 4	Condensed Matter Physics Total Contact Hours: 60 Hours	
Sr.	Course Credit: 4	Total Contact Hours: 60 Hours	Reqd.
Sr. No.	Course Contents (Topics &Subtopics)		
1.	Unit I		15
	Structure Factor:		Hours
	Static Structure Factor its Rel	ation with the Pair Correlation Function.	
		tor by X-Ray Neutron Scattering. Inelastic	
		Structure Factor, Space Time Correlation	
	Function its Relation with Dynamic Structure Factor, Properties of Space		
	Time Correlation Function. Langevin's Equation for Brownian Motion its Modifications. Velocity Auto-Correlation Function, Mean Square		
		veen Velocity Autocorrelation Function	
	Diffusion Coefficient.	ven veroerty rutecorrelation rutetion	
2.	Unit II		15
	Liquid Metals:		Hours
	-	nergy, Electrostatic Exchange Correlation,	
		Diffraction Model, Structure Factor, Form	
		otentials, Energy Eigen States, Dielectric	
	e e.	ber Characteristics, Calculation of Phonon	
	1 I I I I I I I I I I I I I I I I I I I	B Structure Energy in Momentum and	
	-	ivity Formula, Green Function Method for	
3.	Energy Bands in Liquid Metals Unit III		15
5.	Quantum Liquids:		Hours
		Quantum Liquids, Criteria for Freezing,	110013
		He II Tisza's two Fluid Model, Entropy	
		luid Film Vehicle, Viscosity Specific Heat	
	of He4, First Sound, Second S	ound, Third Sound Fourth Sound, Landau	
		T-Matrix Theory of Super fluid He. Basic	
	Differences in Superfluidity in	He ₃ He ₄ .	
4.	Unit IV		15
	Exotic Solids Many and Bodi	Exotic Solids Many and Bodies System:	
	Structure Symmetries of Liquids, Liquid Crystals Amorphous Solids.		Hours
	Structure Symmetries of Liqu	uids, Liquid Crystals Amorphous Solids.	
	Structure Symmetries of Liqu Aperiodic Solids Quasicrysta	uids, Liquid Crystals Amorphous Solids. ls; Fibonacci Sequence, Penrose Lattices	
	Structure Symmetries of Liqu Aperiodic Solids Quasicrystal Their Extension to 3-Dimo	uids, Liquid Crystals Amorphous Solids. ls; Fibonacci Sequence, Penrose Lattices ensions. Schrodinger Time Dependent	
	Structure Symmetries of Liqu Aperiodic Solids Quasicrystal Their Extension to 3-Dimu Independent Equation Review	uids, Liquid Crystals Amorphous Solids. ls; Fibonacci Sequence, Penrose Lattices ensions. Schrodinger Time Dependent ew, Born-Oppenheimer Approximation,	
	Structure Symmetries of Liqu Aperiodic Solids Quasicrystal Their Extension to 3-Dimo Independent Equation Revie Spatial- Spin Orbitals, Elec	uids, Liquid Crystals Amorphous Solids. ls; Fibonacci Sequence, Penrose Lattices ensions. Schrodinger Time Dependent	
	Structure Symmetries of Liqu Aperiodic Solids Quasicrystal Their Extension to 3-Dim Independent Equation Revis Spatial- Spin Orbitals, Elec Correlation Methods, the Har	uids, Liquid Crystals Amorphous Solids. ls; Fibonacci Sequence, Penrose Lattices ensions. Schrodinger Time Dependent ew, Born-Oppenheimer Approximation, tron Correlation Overview of Electron tree-Fock Method; Exchange Correlation,	
	Structure Symmetries of Liqu Aperiodic Solids Quasicrystal Their Extension to 3-Dim Independent Equation Revis Spatial- Spin Orbitals, Elec Correlation Methods, the Har	uids, Liquid Crystals Amorphous Solids. ls; Fibonacci Sequence, Penrose Lattices ensions. Schrodinger Time Dependent ew, Born-Oppenheimer Approximation, tron Correlation Overview of Electron	
	Structure Symmetries of Liqu Aperiodic Solids Quasicrystal Their Extension to 3-Dimo Independent Equation Revia Spatial- Spin Orbitals, Elec Correlation Methods, the Har Density Functional Theory (D on Simple Atoms. Suggested Readings	uids, Liquid Crystals Amorphous Solids. ls; Fibonacci Sequence, Penrose Lattices ensions. Schrodinger Time Dependent ew, Born-Oppenheimer Approximation, tron Correlation Overview of Electron tree-Fock Method; Exchange Correlation, FT), Time Dependent DFT, Computations	
	Structure Symmetries of Liqu Aperiodic Solids Quasicrystal Their Extension to 3-Dime Independent Equation Revio Spatial- Spin Orbitals, Elec Correlation Methods, the Har Density Functional Theory (D on Simple Atoms. Suggested Readings 1. Egelestaff: An Introduc	uids, Liquid Crystals Amorphous Solids. ls; Fibonacci Sequence, Penrose Lattices ensions. Schrodinger Time Dependent ew, Born-Oppenheimer Approximation, tron Correlation Overview of Electron tree-Fock Method; Exchange Correlation,	
	Structure Symmetries of Liqu Aperiodic Solids Quasicrystal Their Extension to 3-Dime Independent Equation Revio Spatial- Spin Orbitals, Elec Correlation Methods, the Har Density Functional Theory (D on Simple Atoms. Suggested Readings 1. Egelestaff: An Introduc 6, 7,8.).	aids, Liquid Crystals Amorphous Solids. ls; Fibonacci Sequence, Penrose Lattices ensions. Schrodinger Time Dependent ew, Born-Oppenheimer Approximation, tron Correlation Overview of Electron tree-Fock Method; Exchange Correlation, FT), Time Dependent DFT, Computations	
	Structure Symmetries of Liqu Aperiodic Solids Quasicrystal Their Extension to 3-Dime Independent Equation Revio Spatial- Spin Orbitals, Elec Correlation Methods, the Har Density Functional Theory (D on Simple Atoms. Suggested Readings 1. Egelestaff: An Introduc 6, 7,8.).	uids, Liquid Crystals Amorphous Solids. ls; Fibonacci Sequence, Penrose Lattices ensions. Schrodinger Time Dependent ew, Born-Oppenheimer Approximation, tron Correlation Overview of Electron tree-Fock Method; Exchange Correlation, FT), Time Dependent DFT, Computations	
	Structure Symmetries of Liqu Aperiodic Solids Quasicrystal Their Extension to 3-Dime Independent Equation Revie Spatial- Spin Orbitals, Elec Correlation Methods, the Har Density Functional Theory (D on Simple Atoms. Suggested Readings 1. Egelestaff: An Introduc 6, 7,8.). 2. Hansen Mc Donald: Th 9).	aids, Liquid Crystals Amorphous Solids. ls; Fibonacci Sequence, Penrose Lattices ensions. Schrodinger Time Dependent ew, Born-Oppenheimer Approximation, tron Correlation Overview of Electron tree-Fock Method; Exchange Correlation, FT), Time Dependent DFT, Computations	
	 Structure Symmetries of Liqu Aperiodic Solids Quasicrystal Their Extension to 3-Dime Independent Equation Revio Spatial- Spin Orbitals, Elec Correlation Methods, the Har Density Functional Theory (D on Simple Atoms. Suggested Readings Egelestaff: An Introduce 7,8.). Hansen Mc Donald: The 9). D. Pines P. Nozier: The 	aids, Liquid Crystals Amorphous Solids. ls; Fibonacci Sequence, Penrose Lattices ensions. Schrodinger Time Dependent ew, Born-Oppenheimer Approximation, tron Correlation Overview of Electron tree-Fock Method; Exchange Correlation, FT), Time Dependent DFT, Computations	

5. March, Young Sampanthar- Many Body Problems.
6. March Tosi: Atomic Motions in Liquids.
7. March, Tosi Street: Amorphous Solids the Liquid State, Plenum, 1985.
8. Dugdale: Electrical Properties of Metals an Alloys.
 Quantum Mechanics, Robert Eisberg Robert Resnick, 2nd edn., 2002, Wiley.
10. Quantum Mechanics, Leonard I. Schiff, 3rdedn. 2010, Tata
McGraw Hill.
11. Michael P Marder, Condensed Matter Physics, 2 nd Ed.; John
Wiley Sons, 2010.
Course Outcomes:
Analyse different types of condensed matter depending upon properties of materials. Analyse the crystal structures by applying crystallographic parameters. Determine crystal structure by analysis Ofxrd data. Analyse electron transport energy related problems by applying quantum mechanical principles. Determine the lattice vibration phenomenon in the solidar determine the concentral theories, methods for understanding the
solids. determine the concepts, theories, methods for understanding the HF, DFT.

	Course Code:	Course Title:			
	MSPHDE301T Course Credit: 4	Electronic Communication Total Contact Hours: 60 Hours			
Sr.	Course Credit: 4	Total Contact Hours: 60 Hours	Reqd.		
No.	Course Contents (Topics & Subtopics)				
1	Unit I		15		
	EM Wave Propagation:		Hours		
	e	tic Waves, Effects of the Environment,			
	Propagation of Waves; Ground Waves, Sky Wave Propagation (Different				
		ll Frequency, Lowest Usable Frequency,			
		Virtual Height, Skip Distance) Space			
	Waves, Tropospheric So Communication	cattering Ducting, Extra-Terrestrial			
2			15		
2	Unit II Modulation:		15 Hours		
		dulation-Amplitude, Frequency Phase	110015		
	U	lex, Evolution Description of SSB,			
		ession of Unwanted Sideband, Extensions			
		: Theory of Frequency Phase Modulation,			
	· · · ·	Generation of Frequency Modulation.			
	Radio Receivers: Receiver	Types, Am Receivers, Communication			
		ngle- Sideband Receivers, Independent-			
	Sideband Receivers.				
3	Unit IV		15		
	Digital Modulation:		Hours		
		pacity, Bits, Bit Rate, Baud M-Ary			
		QAM, Bandwidth Efficiency, Carrier			
		Digital Transmission: Introduction, Pulse			
		Signal to Quantization Noise Ratio,			
	Modulation.	Delta Modulation PCM, Adaptive Delta			
4	Unit IV		15		
	Radar:		Hours		
		Limitations Applications of Radar, Block	iivuis		
		proved Radar, Classification of Radar-			
		ar Pulsed Radar, Free Space Radar Range			
		ange Factors Affecting Range of Radar.			
	Pulsed Radar Systems-Block Diagram. Radar Displays- a-Scope Display,				
	Plan-Position Indicator. Scanning Tracking with Radars-Horizontal Scan				
	Pattern, Elevation/Vertical/Nodding Scan Pattern, Helical Scanning,				
	Spiral Scanning. Tracking-Lobe Switching, Conical Switching, Mono-				
	pulse Tracking, Display Methods, Pulsed Radar Systems. Moving Target				
	Indication, Radar, CW Doppler	Kadar.			
	Suggested Readings:				

Applied Electronics- Sem. III-Paper I

1. Microwave Radar Engineering by M. Kulkarni, V	Umesh
Publications, New Delhi.	
2. Microwave Engineering- by Sanjeev Gupta, Khanna Publi	cation,
New Delhi.	
3. Electronics Communication System-by Kennedy G	leorge,
McGraw Hill.	-
4. Antenna Wave Propagation by Das, McGraw Hill Education	n.
5. Antennas Wave Propagation by Kraus, R. J. Marhefka	a A.S.
Khan, McGraw Hill Education.	
6. Microwaves Radar by A. K. Maini, Khanna Publishers	, New
Delhi	
Course Outcomes:	
On completion of the course students will have knowledge of imp	portant
components of electronic communication system along with di	fferent
types of modulation techniques used in Analog Digital communi-	cation.
The students will be familiar with radar its importance, different ty	pes of
radars etc.	-

Applied Electronics- Sem. III- Paper II

	Course Code:	Course Title:	
	MSPHDE302T	Transmission Lines and Microwave Devices	
	Course Credit: 4	Total Contact Hours: 60 Hours	
Sr. No.	Course Contents (Topi	cs &Subtopics)	Reqd. Hours
1	Unit I		15
	Lines, Different Typ Characteristics Impedar Transmission Line Ana Wave Ratio, VSWR,	B Designation, Fundamental of Transmission bes of Transmission Lines; Definition of nce, Losses in Transmission Lines. Microwave lysis, Reflection Coefficient, Sting Waves, Sing Quarter Half Wavelength Lines, Reactance ion Lines, Fundamental of the Smith Charts its	Hours
2	Unit II		15
	Rectangular, Circular, I Rectangular Waveguide Expression of F_0 in Rec Microwave Tee Junctio Waveguide Bend, Cor	ts: ission Lines Waveguides, Types of waveguides- Ridge. TE TM Modes, Cut-Off Frequency of a , Relation Between Λ_g , Λ_0 , Λ_c , Cavity Resonators, tangular Cavity Resonators, Directional Couplers, ons - H Plane, E-Plane, Magic Tee, Rat Race, ners, Waveguide Iris, Posts Tunning Screws, ng Loops, Microwave Attenuators.	Hours
3	Unit III		15
	Magnetron, Cross Field	dulation, Multicavity Klystrons, Reflex Klystron, d Amplifier, Travelling Wave Tube, Backward rrison of Microwave Tubes.	Hours
4	Unit IV		15
	Varactor Diode, PIN	Classification of Solid State Microwave Devices, Diode, Tunnel Diode, Gunn Diode, IMPATT ficrowave Field Effect Transistors, Types of	Hours
	Suggested Readings		
	 Publications, Nev 2. Microwave Deve ofGredia Private 3. Microwave Circ Raghuvanshi, Wi 4. Microwave Engi New Delhi. 	dar Engineering by M. Kulkarni, Umesh w Delhi. ices Circuits- bySamuley Y. Liao, Prentice Hall Limited, New Delhi. cuits Passive Devices-by M.L. Sisodia &G.S. iley Eastern Limited, New Delhi. neering- by Sanjeev Gupta, Khanna Publication, mmunication System –by Kennedy George,	
	Course Outcomes		
	The students will unde	rstand the basic EM theory propagation of EM sion lines microwave components. They will get an	

idea about the electronics at low frequency at microwave frequency. They	
also will get acquainted with various microwave components; various	
tubes used to generate microwaves microwave solid state devices.	

Sem. III Applied Electronics Lab-1

	Course Code:	Course Title: Applied Electronics Lab-1	
	MSPHLB301P	Minimum Number of Experiments to be	
		Performed Reported in the Journal = 10	
	Course Credit: 4	Total Contact Hours: 120 Hours	
Sr. No.	List of Experiments		
		GROUP-A (Minimum 05)	
1	Amplitude Modulator	Demodulator	
2		Demodulator - Study of Suppressed Carrier Am	
	Generation Using IC		
3	Characteristics of PLI		
4	FM Modulator Demo	lulator	
5	To Study Implement I	Pulse Position Modulator (PPM)	
6	To Construct Pulse An	nplitude Modulation Demodulation Circuit	
7	To Study Implement I	Pulse Width Modulation (PWM)	
8	^	y Frequency Shift Keying (FSK) Modulator	
0	Demodulator		
9		y Amplitude Shift Keying (FSK) Modulator	
	Demodulator		
10	To Study Implement I	Pulse Position Modulation (PPM)	
		GROUP-B (Minimum 05)	
11		mponents Setup Study.	
12		ron Modes Using X-B Set Up	
13	Study of Propagation Characteristics in a Waveguide.		
14		Juency & Wavelength ina Rectangular Wave Guide	
15	-	of Microwave Directional Coupler. Compute (I)	
	Coupling Factor (II) I	· · · · · · · · · · · · · · · · · · ·	
16		f Microwave E-Plane Tee.	
17	To Study Properties o	f Microwave H-Plane Tee	

	Course Code: MSPHPR301P	Course Title: Project-01			
	Course Credit: 4	Total Contact Hours: 120 Hours			
Sr. No.	List of Experiments				
	Research Level Project				

Sem. III Applied Electronics - Project-01

	Course Code:	Course Title: Thin Film Physics		
	MSPHDE303T			
	Course Credit: 4	Total Contact Hours: 60 Hours		
Sr. No.	Course Contents (Topics & Subtopics)		Reqd. Hours	
1	Unit I		15	
	Physics of Surfaces, Interfaces and Thin Films: Definition of Thin Film, Mechanism of Thin Film Formation: Condensation Nucleation, Growth Coalescence of ISLS, Crystallographic Structure of Films, Factors Affecting Structure Properties of Thin Films; Applications of Thin Films.			
2	Unit II		15	
	Substrate Deposition Techno Evaporation Methods, Laser E Sputtering Process Sputtering V Beam Sputtering. Chemical Methods: Chemical	Peposition Apparatus: Vacuum Systems, plogy, Substrate Materials, Thermal Evaporation, Sputtering: Introduction to Variants, Glow Discharge Sputtering, Ion Vapor Deposition, Electrodeposition, Etc. Langmuir-Blodgett Method.	Hours	
3	Unit III	Des Lungmun Diougett Methou	15	
	Crystal Method, Optical Method Properties: Introduction to Elas	vlus Method, Electrical Method, Quartz s, Mass Measurements (Microbalance) sticity, Plasticity Mechanical Behaviour, ties of Thin Films, Optical Properties of	Hours	
4	Unit IV		15	
	I-V Characterization of Thin F X-Ray Diffraction, Scannin Characterization. Introduction,	Silms (Structural Morphological): gElectronBlectronMicroscopy,ChemicalElectronSpectroscopy,X-RayEnergyLayPhotoelectronSpectroscopy(XPS)	Hours	
	Suggested Readings			
	 Company, NY 1969. 2. The Materials Science of Press, (1992). 3. Properties of Thin Films 4. Physics of Thin Films by 	by K L Chopra McGraw-Hill Book Thin Films by Milton Oaring, Academic by Joy George, Marcel Decker, (1992). Ludmila Eckertová, Springer (1986). y O S Heavens, Methuen Young Books		
	Course Outcomes:			
	Students will come to know the They will learn different phy	thin film, its different formation stages. vsical chemical methods of thin film aracterization techniques of thin films.		

Solid State Physics – Sem. III- Paper I

Solid	State	Physics	– Sem.	III-	Paper I	I

	Course Code:	Course Title:	
	MSPHDE304T	Semiconductor Physics	
	Course Credit: 4	Total Contact Hours: 60 Hours	
Sr. No.	Course Contents (Topics &Subt	opics)	Reqd. Hours
1	Unit I		15
	Energy Bands and Charge Carriers in Semiconductors:		Hours
	Variation of Energy Bs with A	bolids, Direct Indirect Semiconductors, lloy Composition, Charge Carriers in s, Effective Mass, Intrinsic Extrinsic	
	Concentration at Equilibrium, Ter	antum Wells, The Fermi Level, Carrier nperature Dependence, Space Charge ility, Drift Resistance, Effects of	
	Temperature Doping on Mobility,		
2	Unit II		15
	Holes, Indirect Recombination Tr Quasi Fermi Levels, Diffusion	ce, Direct Recombination of Electrons apping, Steady State Carrier Generation Processes, Diffusion Drift of Carriers, quation, Steady State Carrier Injection,	Hours
3	Unit III		15
	Thermal Processing, Ion Implanta Metallization, The Contact Pot	Thermal Oxidation, Diffusion, Rapid ation, CVD, Photolithography, Etching, ential, Space Charge at a Junction, ent Flow at a Junction, Reverse-Bias	Hours
4	Unit IV		15
	-	č	Hours
	Suggested Readings		
	5. Fundamentals of Semicon	Devices by S. M. Sze. Physics by Mckelvey. aterials Devicesby S.O. Kasap. ductor, Physics of Materials Properties,	
	Yu, Peter, Cardona, Manu	el, Springer.	
	Course Outcomes: Students will be able to understan	d the basics of semiconductor, b theory.	
		semiconductor junction it properties.	

	Course Code:	Course Title: Solid State Physics Lab - 1
	MSPHLB302P	Minimum number of experiments to be
		performed and reported in the journal $= 10$
	Course Credit: 4	Total contact hours: 120 Hours
Sr.	T.	
No.	LIST	t of Experiments
	GROU	JP-A (Minimum 05)
1	Structure determination of powder diffraction.	polycrystalline sample by X-ray powder
2	Intensity analysis of XRD peaks.	
3	Strain analysis and Particle size de	etermination by XRD.
4	Calibration of unknown magnetic	field using a Hall Probe.
5	Study of AC Hall effect in given se	miconducting sample.
6	Measurement of thermo-emf of Iron thermocouple as a function of temp	n-Copper (Fe-Cu) or chromel-alumel erature.
7	Study of Ionic conductivity of solid	
8	Determination dielectric constant o	
9	Determination of Transition Tempe	
10	Study of frequency response of die	
11	ResistivityofGesamplebyvanderPauwmethodatdifferenttempanddeterminationofba ndgap.	
12	• •	tion studies of elemental/ compound
		P-B (Minimum 05)
13	Band gap of semiconductors by pho	
14	Band gap measurements of thin filr	· · · · · · · · · · · · · · · · · · ·
15		s diodes at room temp, identification of different
16	Carrier life time by light pulse met	
17	Determination	ductingthinfilmsatroomtemperatureanditstemper
18	Thermo-electric power measurement	nt of semiconducting thin films.
19	Least squares fit/curve-fitting.	
20	Thin film thickness measurement b	y Gravimetric method.
21	Thin film deposition by electrodepo	ostion method.
22	Synthesis of given material in requ	ired stoichiometry by chemical method.
23	Synthesis of composite material in	T A
24	Study of cyclic voltammetry (CV).	
25	Study of phase diagram of given co	omponent system.

Sem. III - Solid State Physics Lab - 1

Sem. III Solid State Physics Project-1

	Course Code	Course Title: Project-1	
	MSPHPR302P		
	Course Credit: 4	Total Contact Hours: 120	
		Hours	
Sr. No.	List of Experiments		
	Research Level	Project	

Solid State Electronics – Sem. III- Paper I

	Course Code: MSPHDE305T	Course Title: Semiconductor Devices	
	Course Credit: 4	Total Contact Hours: 60 Hours	
Sr. No.	Course Contents (Topics &Subtopics)		Reqd. Hours
1.	Unit I Metal-Insulator-Semiconductor (MIS) Devices: Review of Ideal Mis Device, Si-Sio2 Practical Mos Diode, Oxide Charges, Defects, Surface Interface States, C-V G-V Measurement		15 Hours
	Techniques Characterization of Device Characteristics, Types Buried-Channel Devices, Short- MOSFET Structures- HMOS, Coupled Devices (CCDS), Non-	Mos Devices. Review of MOSFET Basic of MOSFETs, Non- Uniform Doping Channel Effects, Mos Transistor Scaling. DMOS, SOI, VMOS, HEXFET. Charge -volatile Memory Devices, Simulation.	
2.	Unit IIMicrowave, Power & Hot Electron Devices:Microwave Devices-Different Types of Tunnel Diodes, TunnelTransistor, IMPATT Diode, Baritt Diode, Dovett Diode, TransferredElectron Device, Gunn Diode, Microwave Transistor, Thyristors, BipolarPower Transistor, Hot Electron Transistor; Mos Power Transistor, Hemt.		15 Hours
3.	Photodiode Materials, Phototr Considerations, Thin Film Sola Semiconductor Lasers, Optica (Js-Art.15.8), Heterojunction Confined Stark Effect (Js. Art Application of Laser in Materia	d Crystal Displays, Photo Detectors, ansistor, Solar Cells, Materials Design ar Cells, Amorphous Silicon Solar Cells, al Processes in Semiconductor Lasers Lasers. Exciton (Js-Art16.1), Quantum (16.6), Quantum Well IR Photodetector, ils Processing, Fiber Optical Waveguides, easurement of Fiber Characteristics, Fiber tics Simulation.	15 Hours
4.	Structure in Quantum Well Modulation Doping; Mobility in 8.6, 14.2) Nanotechnology: Nanomater Nanoparticles, Semiconductor Carbon Nanostructures, Microelectromechanical System	Modifications by Heterostructures; B ls, Quantum Wires, Quantum Dots; n a MODFET Quantum Well (Js-6.2, 6.3, ials, Nanostructures, Synthesis of Nanocrystals, Metallic Nanoclusters, Bulk Nanostructured Materials,	15 Hours
	Suggested Readings:1. S.M. Sze, Physics of Se1981.2. Jasprit Singh, SemiconStudent Edition, New Detection	emiconductor Devices, John Wiley, N.Y., ductor Devices-Basic Principles, Wiley	

4. Gerd Kelser, Optical Fiber Communication, Mc Graw Hill-1980.	
5. Jasprit Singh, Physics of Semiconductors Their Heterostructures,	
Mcgraw-Hill, New York, 1993.	
6. C. P. Poole F.J. Owens, Introduction to Nanotechnology, Wiley	
Interscience, Hoboken, New Jersey, 2003.	
7. E.H. Nicollianan J.R. Brews, Mos Physics Technology, John	
Wiley, 1982.	
8. J. Wilson J.F.B.Hawkes, Optoelectronics, an Introduction,	
Prentice Hall, 1983.	
9. Jasprit Singh, Semiconductor Optoelectronics, Mc-Graw Hill.	
Course Outcomes:	
On successful completion of the course, the students will be able to	
describe the properties of materials application of semiconductor	
electronics. Apply the knowledge of semiconductors to illustrate the	
functioning of basic electronic devices. Demonstrate the switching	
amplification application of the semiconductor devices. Demonstrate the	
control applications using semiconductor devices. Identify the fabrication	
methods of integrated circuits. Classify describe the semiconductor	
devices for special applications.	

	Course Code:	Course Title: Thin Film: Properties and	
	MSPHDE306T	Techniques	
	Course Credit: 4	Total Contact Hours: 60 Hours	
Sr. No.	Course Contents (Topics &S	ubtopics)	Reqd. Hours
1.	Unit I		15
	Cathode Sputtering, Anodic (Vapour Deposition (CVD), Ablation, Longmuir Blochet I Measurements: Resistance, C	esis of Thin Films: Vacuum Evaporation, Oxidation, Plasma Anodization, Chemical Ion-Assisted Deposition (LAD), Laser Film, Sol-Gel Film Deposition. Thickness apacitance, Microbalance, Quartz Crystal Absorption, Multiple Beam Interference,	Hours
2.	Unit II		15
	Thin Film Physics: Mechanism of Thin Film Formation: Formation Stages of Thin Films, Condensation Nucleation, Thermodynamic Theory of Nucleation, Growth Coalescence of ISLS, Influence of Various Factors on Final Structure of Thin Films, Crystallographic Structure of Thin Films. Properties of Thin Films: Conductivity of Metal Films, Electrical Properties of Semiconductor Thin Films, Transport in Dielectric Thin Films, Dielectric Properties of Thin Films, Optical Properties of Thin Films. Thin Films of High Temperature Superconductors, Diamond Like Carbon Thin Films.		Hours
3.	Unit III		15
	Effect Transistors: Fabrication Antireflection Coatings, In Electrical Dielectric Behavio	als, Capacitor Structures, Thin Film Field h Characteristics, Thin Film Solar Cells – hterference Filters, Electrophotography- bur of Thin Films, Components, Strain http://www.components.com/pail/1000000000000000000000000000000000000	Hours
4.	Unit IV	8 1	15
	Characterization/Analysis of X-Ray Diffraction(XRD), Ele Microscopy (TEM), Scanni Dispersive Analysis of X- Diffraction (LEED), UV-VIS Infrared (FTIR) Spectroscop Resonance (ESR), X-Ray Spectroscopy (AES), Xray Ph	Materials Devices: ectron Diffraction, Transmission Electron ng Electron Microscopy(Sem), Energy Rays (EDAX), Low Energy Electron Spectroscopy, ATR, Fourier Transform by, Raman Spectroscopy, Electron Spin Fluorescence (XRF), Auger Electron otoelectron Spectroscopy (XPS), Scanning I), Atomic Force Microscopy (AFM). Ion	Hours
	Beam Analysis Technique Channelling, Elastic Recoil D Mass Spectroscopy (SIMS).	etection Analysis (ERDA), Secondary Ion	
	Beam Analysis Technique Channelling, Elastic Recoil D Mass Spectroscopy (SIMS). Suggested Readings:		

Solid State Electronics – Sem. III- Paper II

 K.L. Chopra, Thin Film Phenomena, McGraw Hill, New York, 1969. L. C. Feldman J. W. Mayer, Fundamentals of Surface Thin Films Analysis, North Holl, Amsterdam, 1986. S.M. Sze, Semiconductor Devices-Physics Technology, John Wiley, 1985. Milton Ohring, the Materials Science of Thin Films, Academic Press, 2001. C.C. Koch, 'Nano Structured Materials', Vol. 2, 1993. a. Roth, 'Vacuum Technology', North – Hol Pub., II Edition, 1982. C.N.R. Rao, a. Muller, a. K. Cheetham (Eds.), 'the Chemistry of 9. Nanomaterials: Synthesis, Properties Applications', Wiley-Vch Verlag Gmbh & Co., Weinheim, 2004. H. Gleiter, 'Progress in Materials Science', Vol. 33 (1989). Donald L. Smith, 'Thin Film Deposition: Principles Practice', Mcgraw-Hill, 1995. George Hass, 'Physics of Thin Films' Volumes 1-12, Academic Press, 1963. Surface Physics of Materials, Vol. I II (Academic Press). Additional References: R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). Course Outcomes: Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization methods apply the knowledge to develop a device. 		
 L. C. Feldman J. W. Mayer, Fundamentals of Surface Thin Films Analysis, North Holl, Amsterdam, 1986. S.M. Sze, Semiconductor Devices-Physics Technology, John Wiley,1985. Milton Ohring, the Materials Science of Thin Films, Academic Press, 2001. C.C. Koch, 'Nano Structured Materials', Vol. 2, 1993. a. Roth, 'Vacuum Technology', North – Hol Pub., II Edition, 1982. C.N.R. Rao, a. Muller, a. K. Cheetham (Eds.), 'the Chemistry of Nanomaterials: Synthesis, Properties Applications', Wiley-Vch Verlag Gmbh & Co., Weinheim, 2004. H. Gleiter, 'Progress in Materials Science', Vol. 33 (1989). Donald L. Smith, 'Thin Film Deposition: Principles Practice', Mcgraw-Hill,1995. George Hass, 'Physics of Thin Films' Volumes 1-12, Academic Press, 1963. Surface Physics of Materials, Vol. I II (Academic Press). Additional References: R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). Course Outcomes: Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization 		York,
 4. S.M. Sze, Semiconductor Devices-Physics Technology, John Wiley,1985. 5. Milton Ohring, the Materials Science of Thin Films, Academic Press, 2001. 6. C.C. Koch, 'Nano Structured Materials', Vol. 2, 1993. 7. a. Roth, 'Vacuum Technology', North – Hol Pub., II Edition, 1982. 8. C.N.R. Rao, a. Muller, a. K. Cheetham (Eds.), 'the Chemistry of 9. Nanomaterials: Synthesis, Properties Applications', Wiley-Vch Verlag Gmbh & Co., Weinheim, 2004. 10. H. Gleiter, 'Progress in Materials Science', Vol. 33 (1989). 11. Donald L. Smith, 'Thin Film Deposition: Principles Practice', Mcgraw-Hill,1995. 12. George Hass, 'Physics of Thin Films' Volumes 1-12, Academic Press, 1963. 13. Surface Physics of Materials, Vol. I II (Academic Press). 14. Additional References: 15. R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). 	3. L. C. Feldman J. W. Mayer, Fundamentals of Surface Thir	n Films
 Wiley,1985. 5. Milton Ohring, the Materials Science of Thin Films, Academic Press, 2001. 6. C.C. Koch, 'Nano Structured Materials', Vol. 2, 1993. 7. a. Roth, 'Vacuum Technology', North – Hol Pub., II Edition, 1982. 8. C.N.R. Rao, a. Muller, a. K. Cheetham (Eds.), 'the Chemistry of 9. Nanomaterials: Synthesis, Properties Applications', Wiley-Vch Verlag Gmbh & Co., Weinheim, 2004. 10. H. Gleiter, 'Progress in Materials Science', Vol. 33 (1989). 11. Donald L. Smith, 'Thin Film Deposition: Principles Practice', Mcgraw-Hill,1995. 12. George Hass, 'Physics of Thin Films' Volumes 1-12, Academic Press, 1963. 13. Surface Physics of Materials, Vol. I II (Academic Press). 14. Additional References: 15. R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). Course Outcomes: Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization 		
 Press, 2001. 6. C.C. Koch, 'Nano Structured Materials', Vol. 2, 1993. 7. a. Roth, 'Vacuum Technology', North – Hol Pub., II Edition, 1982. 8. C.N.R. Rao, a. Muller, a. K. Cheetham (Eds.), 'the Chemistry of 9. Nanomaterials: Synthesis, Properties Applications', Wiley-Vch Verlag Gmbh & Co., Weinheim, 2004. 10. H. Gleiter, 'Progress in Materials Science', Vol. 33 (1989). 11. Donald L. Smith, 'Thin Film Deposition: Principles Practice', Mcgraw-Hill, 1995. 12. George Hass, 'Physics of Thin Films' Volumes 1-12, Academic Press, 1963. 13. Surface Physics of Materials, Vol. I II (Academic Press). 14. Additional References: 15. R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). Course Outcomes: Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization 		, John
 6. C.C. Koch, 'Nano Structured Materials', Vol. 2, 1993. 7. a. Roth, 'Vacuum Technology', North – Hol Pub., II Edition, 1982. 8. C.N.R. Rao, a. Muller, a. K. Cheetham (Eds.), 'the Chemistry of 9. Nanomaterials: Synthesis, Properties Applications', Wiley-Vch Verlag Gmbh & Co., Weinheim, 2004. 10. H. Gleiter, 'Progress in Materials Science', Vol. 33 (1989). 11. Donald L. Smith, 'Thin Film Deposition: Principles Practice', Mcgraw-Hill,1995. 12. George Hass, 'Physics of Thin Films' Volumes 1-12, Academic Press, 1963. 13. Surface Physics of Materials, Vol. I II (Academic Press). 14. Additional References: 15. R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). 	-	ademic
 7. a. Roth, 'Vacuum Technology', North – Hol Pub., II Edition, 1982. 8. C.N.R. Rao, a. Muller, a. K. Cheetham (Eds.), 'the Chemistry of 9. Nanomaterials: Synthesis, Properties Applications', Wiley-Vch Verlag Gmbh & Co., Weinheim, 2004. 10. H. Gleiter, 'Progress in Materials Science', Vol. 33 (1989). 11. Donald L. Smith, 'Thin Film Deposition: Principles Practice', Mcgraw-Hill, 1995. 12. George Hass, 'Physics of Thin Films' Volumes 1-12, Academic Press, 1963. 13. Surface Physics of Materials, Vol. I II (Academic Press). 14. Additional References: 15. R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). 		
 1982. 8. C.N.R. Rao, a. Muller, a. K. Cheetham (Eds.), 'the Chemistry of 9. Nanomaterials: Synthesis, Properties Applications', Wiley-Vch Verlag Gmbh & Co., Weinheim, 2004. 10. H. Gleiter, 'Progress in Materials Science', Vol. 33 (1989). 11. Donald L. Smith, 'Thin Film Deposition: Principles Practice', Mcgraw-Hill,1995. 12. George Hass, 'Physics of Thin Films' Volumes 1-12, Academic Press, 1963. 13. Surface Physics of Materials, Vol. I II (Academic Press). 14. Additional References: 15. R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). Course Outcomes: Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization 		Edition
 9. Nanomaterials: Synthesis, Properties Applications', Wiley-Vch Verlag Gmbh & Co., Weinheim, 2004. 10. H. Gleiter, 'Progress in Materials Science', Vol. 33 (1989). 11. Donald L. Smith, 'Thin Film Deposition: Principles Practice', Mcgraw-Hill,1995. 12. George Hass, 'Physics of Thin Films' Volumes 1-12, Academic Press, 1963. 13. Surface Physics of Materials, Vol. I II (Academic Press). 14. Additional References: 15. R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). 		
 Verlag Gmbh & Co., Weinheim, 2004. 10. H. Gleiter, 'Progress in Materials Science', Vol. 33 (1989). 11. Donald L. Smith, 'Thin Film Deposition: Principles Practice', Mcgraw-Hill, 1995. 12. George Hass, 'Physics of Thin Films' Volumes 1-12, Academic Press, 1963. 13. Surface Physics of Materials, Vol. I II (Academic Press). 14. Additional References: 15. R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). 	8. C.N.R. Rao, a. Muller, a. K. Cheetham (Eds.), 'the Chemist	ry of
 10. H. Gleiter, 'Progress in Materials Science', Vol. 33 (1989). 11. Donald L. Smith, 'Thin Film Deposition: Principles Practice', Mcgraw-Hill,1995. 12. George Hass, 'Physics of Thin Films' Volumes 1-12, Academic Press, 1963. 13. Surface Physics of Materials, Vol. I II (Academic Press). 14. Additional References: 15. R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). Course Outcomes: Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization	9. Nanomaterials: Synthesis, Properties Applications', Wile	ey-Vch
 10. H. Gleiter, 'Progress in Materials Science', Vol. 33 (1989). 11. Donald L. Smith, 'Thin Film Deposition: Principles Practice', Mcgraw-Hill,1995. 12. George Hass, 'Physics of Thin Films' Volumes 1-12, Academic Press, 1963. 13. Surface Physics of Materials, Vol. I II (Academic Press). 14. Additional References: 15. R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). Course Outcomes: Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization 	Verlag Gmbh & Co., Weinheim, 2004.	
 11. Donald L. Smith, 'Thin Film Deposition: Principles Practice', Mcgraw-Hill,1995. 12. George Hass, 'Physics of Thin Films' Volumes 1-12, Academic Press, 1963. 13. Surface Physics of Materials, Vol. I II (Academic Press). 14. Additional References: 15. R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). Course Outcomes: Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization		
Mcgraw-Hill,1995.12. George Hass, 'Physics of Thin Films' Volumes 1-12, Academic Press, 1963.13. Surface Physics of Materials, Vol. I II (Academic Press).14. Additional References:15. R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984).Course Outcomes:Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization		actice'.
 12. George Hass, 'Physics of Thin Films' Volumes 1-12, Academic Press, 1963. 13. Surface Physics of Materials, Vol. I II (Academic Press). 14. Additional References: 15. R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). Course Outcomes: Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization 		,
Press, 1963. 13. Surface Physics of Materials, Vol. I II (Academic Press). 14. Additional References: 15. R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). Course Outcomes: Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization		ademic
 13. Surface Physics of Materials, Vol. I II (Academic Press). 14. Additional References: 15. R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). Course Outcomes: Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization 		
14. Additional References: 15. R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). Course Outcomes: Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization		
 15. R.W. Berry, P. M.Hall M.T. Harris, Thin Film Technology, Van Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). Course Outcomes: Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization 		
Nostrand, New Jersey, 1970, K. L. Chopra L. k. Malhotra (Ed), 16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). Course Outcomes: Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization		w Van
16. Thin Film Technology Applications, T. M. H. Publishing Co., New Delhi (1984). Course Outcomes: Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization		
New Delhi (1984). Course Outcomes: Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization		
Course Outcomes: Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization		ig CO.,
Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization		
Analyse the behaviour of the thin films by different characterization		
methods apply the knowledge to develop a device.		rization
	methods apply the knowledge to develop a device.	

	Course Code: MSPHLB303P	Course Title: Solid State Electronics Lab-1 Minimum number of experiments to be performed and reported in	
		the journal $=10$	
	Course Credit: 4	Total contact hours: 120 Hours	
Sr. No.		List of Experiments	
		GROUP-A (Minimum 05)	
1	diffraction.	on of powder polycrystalline sample by X-ray powder	
2	Intensity analysis of		
3		article size determination by XRD.	
4	-	er measurement of semiconducting thin films.	
5	Study of AC Hall effe	et in given semiconducting sample.	
6	thermocouple as a fun		
7	Resistivity of Ge same determination of band	ple by vander Pauw method at different temp and gap.	
8	Optical transmission and absorption studies of elemental/ compound semiconductors.		
9		e material in given composition	
10		Ge, Si,Ga As diodes at room temp, identification of different	
11	regions, determination	•	
11	Carrier life time by lig Fabrication of FET ar		_
12		GROUP-B (Minimum 05)	
13	Band gan of semicono	luctors by photoconductivity.	
13		nts of thin films using UV-Vis Spectroscopy.	
15	• •	ric constant of given ferroelectric material.	
16		sition Temperature of a Ferroelectric Material.	
17	Determination dc elec	trical conductivity of Semiconducting thin films at room	
18		mperature dependence nd its characterization	
18	Least squares fit/curve		+
20		easurement by Gravimetric method.	
20		by electrode position method.	+
21		terial in required stoichiometry by chemical method.	
23	Study of Ionic conduc		
24	Study of cyclic voltan	•	
25	÷ ÷	m of given component system.	

Sem. III Solid State Electronics Lab-1

Sem. III Solid State Electronics Project -1

	Course Code MSPHPR303P	Course Title: Project -1	
	Course Credit: 4	Total Contact Hours: 120 Hours	
Sr.No.	List of Experiments		
	Research Level Project		

	Course Code: MSPHDE307T	Course Title: Fundamentals of Materials Science	
	Course Credit: 4	Total Contact Hours: 60 Hours	
Sr. No.	Course Con	tents (Topics &Subtopics)	Reqd. Hours
1	states, Atomic bonding in so variation in bonding characte Non crystalline solids ,	dislocation, Schmid's law - Surface	15 Hours
2	Unit II Solid Solutions and Alloys: Introduction, Crystals, Sing Space Lattice, Unit Cell, F System, Crystal Structure for Density of Crystal, Direct Inter planer Spacing, Repre Structure, Sketching the Plan diagrams, Gibbs phase rule phase diagram, lever rule, Phase transformation, Nucley	le Crystal, Whiskers, Lattice Points and Primitive Cell, Crystal Classes, Crystal or Metallic Elements, Atomic Radius, tions, Lattice Planes and Miller Indices, sentation of Crystal Planes in a Cubic ne from the given Miller Indices, Phase e Single component systems – Eutectic Study of properties of phase diagrams -	15 Hours
3	semiconductors - Fermi lev with temperature – law of ma for intrinsic and extrinsic	ctors: rinsic, extrinsic semiconductors, organic el - variation of conductivity, mobility ass action - Hall effect – Hall coefficients semiconductors – Hall effect devices. sintering, doping of semiconductors and	15 Hours
4	Unit IV: Mechanical and Magnetic H Mechanical properties, S Deformation, elasticity, hards with solids, Atomic, electron refraction, reflection, A luminescence Magnetic prop domain theory, magnetic hy Heisenberg's theory, magnet energy, antiferromagnetism and Properties of Carbon TTT Diagram, Transforma	Properties: tress, Strain, Elastic properties – ness, Optical properties, Light interaction ic interaction, nonradioactive transition - bsorption, Transmission, Insulators, erties, paramagnetism, ferromagnetism - ysteresis, Weiss molecular field theory, etic anisotropy, domain walls, Exchange Decomposition of Austenite, Types – Steels, Isothermal Transformation, ation of Austenite Upon Continuous f Austenite to Marten site, Metals for	15 Hours

Materials Science- Sem. III- Paper I

Sugg	ested Readings:	
1.	S.L.Kakani Amit Kakani, Materials Sciecne, 2 nd Edition, New AgeInternational Publisher Materials Science.	
2.	Kwan Chi Kao F. R. De Boer;Dielectric Phenomena in Solids, Elsevier Academic Press (2004).	
3.	J. P. Srivastava, Elements of SolidState Physics, 2 nd Edi Prentice Hall of India(P) Ltd. (2007).	
4.	Charles Kittle; Introduction to Solid State Physics, 7 th Edition, JohnWiley &Sons, (1996).	
5.	Saxena, Gupta, Saxena; Fundamentals ofSolid State Physics, PragatiPrakashan, (2012).	
	A. J. Dekkar; Solid State Physics, 1 st Ed. Macmillan (2000).	
7.	M.A. Wahab; Solid State Physics: Structure Properties of Materials, Alpha Science International (2005).	
8.	S.O. Pillai;Solid State Physics, 6 th Ed., New Age International (P) LtdPublishers, (2005)	
Cours	e Outcomes:	
Diffe	ents will Come to Know Fundamentals of MaterialsScience, rent Types of Materials, Defects in Materials, Different Phases of rials Etc.	

	Course Code: MSPHDE308T	Course Title: Nanoscience and Nanotechnology	
	Course Credit:4	Total Contact Hours: 60 Hours	
Sr. No.	Course Cont	tents (Topics &Subtopics)	Reqd. Hours
1	materials, quantum effects, 11 states, Excitons, Coulomb bl dimensional structure, Size c properties: optical, electronic	erials: ology, physics of low-dimensional D, 2D and 3D confinement, Density of ockade, Zero-, One-, Two- and Three- ontrol of metal nanoparticles and their c, agnetic properties; surface plasmon gap; Application: catalysis, electronic	15 Hours
2	size distribution control, s assembling and self-organiza patterning of soft materials b chemical self-assembly, art	materials: Bottom - up Technique, Importance of size measurement and size selection, tion of nanostructures, Nanofabrication: y self-organisation and other techniques, ificial multilayers, cluster fabrication, robe lithography, Micro contact printing.	15 Hours
3	TunnellingMicroscope(STMicroscopeSEMTechniquesHighResolutionTEM	Techniques, The Details of scanning	15 Hours
4	Unit IV Applications of Nanomateria Advantages of nanoelectrical electromechanical systems & MEMS, diodes and nano-wir displays, filters (IR blocking)	and electronic devices, micro and nano sensors, actuators, optical switches, bio- e transistors , data memory lighting and , quantum optical devices, batteries - fuel electric double layer capacitors, lead-free	15 Hours
	Shankar, Baldev Raj Et 2. Introduction to Nan Chattopadhyay A. N.	ience Nanotechnolgy, B.S.Murty, P. .Al, Universities Press-Iim oscience Nanotechnology : K. K. Banerjee, Phi Publisher. ogy: V. S. Murlidharan, A. Subramanum. Yurygogotsi	

Materials Science- Sem. III- Paper II

 A Hand book of Nanotechnology: A. G. Brecket Instrumentations Nanostructures: a. S. Bhatia. Nanotechnology: Nanostructures Nanomaterials- M. B. Rao. Nanotechnology-Principles Practices S. K.Kulkurni 	
Course Outcomes:	
From this course students will able to know the basics of nanoscience, its history, growth techniques. Students will know different characterization tools used for characterization of nano materials.	

	Course Code: MSPHLB304P	Course Title: Materials Science Lab -1
	Course Code. MISFHLB304F	
		Minimum number of experiments to be
		performed and reported in the journal = 10
G	Course Credit: 4	Total contact hours: 120 Hours
Sr. No.	List of	Experiments
		-A (Minimum 05)
1		crystalline sample by X-ray powder diffraction.
2	Strain analysis and Particle size determ	
3	Thermo-electric power measurement o	
4	Determination of tensile stress and stra	in of given material.
5	Corrosion study of electrode materials	
6	Measurement of thermo-emf of Iron-Co as a function of temperature.	pper (Fe-Cu) orchromel-alumel thermocouple
7	Study of gas sensing properties of given	
8	Optical transmission and absorption	studies of elemental/ compound
	semiconductors.	
9	Synthesis of composite material in given	
10	I-V characteristics of given material and	
11	Study and calibration of Humidity sense	
12	Synthesis and Characterization of Polyn	B (Minimum 05)
13	Band gap of semiconductors by photoco	
13	Band gap of semiconductors by photocol Band gap measurements of thin films us	
14	Determination dielectric constant of giv	
15	Determination diffective constant of giv	
17	Determination	
1/		ngthinfilmsatroomtemperatureanditstemperatur
	e dependence.	nguninimisatioonnemperatureandristemperatur
18	Fabrication of MOS and its characteriza	tion
19	Least squares fit /curve-fitting.	
20	Thin film thickness measurement by Gr	avimetric method.
20	Thin film deposition by electrodeposition	
22	Synthesis of given material in required s	
23	Study of Ionic conductivity of solids.	
24	Study of cyclic voltammetry (CV).	
25	Study of phase diagram of given compo	nent system.
I		5

Sem. III Materials Science Lab -1

Sem. III Materials Science Project-1

	Course Code MSPHPR304P	Course Title: Project-1	
	Course Credit: 4	Total Contact Hours: 120	
		Hours	
Sr. No.	List of Experiments		
	Research Level P	roject	

	Course Code:	Course Title:	
	MSPHGE301T	Applications of Scientific Programming Languages	
	Course Credit: 2	Total Contact Hours: 30 Hours	
Sr. No.	Course Contents (T	'opics &Subtopics)	Reqd. Hours
1	Unit I		9
	If Else End Structu Statement. Loops, f Conditional Statem Applications. Two and three-Dim The Plot Command Plotting Multiple Gr Hold on, Hold Off Formatting a Plot U Logarithmic Axes, D	Operations, Conditional Statement, The If End Structure, The are, The If Else if Else End Structure, The Switch Case for End Loops, While End Loops, Nested Loops Nested aents, The Break Continue Commands, Examples of Rensional Plots: s; Plot of Given Data, Plot of Functions. The <i>fplot</i> Comm. raphs in the Same Plot; Using the Plot Command, Using the Commands, Using the Line Comm. Formatting a Plot; sing Commands; Formatting a Using Plot Editor, Plot with Plot with Special Graphics, Histogram, Polar Plots, Plotting	Hours
	Three Dimensional Line Plots, Mesh Su Examples of Applica	rface Plot, Plots with Special Graphs, The View Commands,	6
2	Unit II	Fitting and Interpolations:	6 Hours
	Polynomials; Value Multiplications Div Fitting; Curve Fittin	e of a Polynomial, Roots of Polynomials, Addition, ision of Polynomials, Derivatives of Polynomials. Curve ng with Polynomials, Polyfit Function, Curve Fitting with an Polynomials. Interpolation; The Basic Fitting Interface.	
3	Unit III		7
	of Linear Equation Minimum Maximu Integrations, Ordina by Euler Method, S Kutta Method Inve values, Determination	is with One Variable, Solution of Linear Equations, Solution is for Underdetermined Over determined Cases, Finding im of a Function, Numerical Integrations, Differentiations ory Differential Equations, Solution of Differential Equations olution of Differential Equations Using Forth Order Runge- rses Determinants, Matrix Powers Exponentials, Eigen- ons of Roots of Polynomials.	Hours
4	Unit IV		8
	Example Using a V Damped, Driven Pe Method, Kepler's Relaxation Method. Wave-Packet Const Dimension, Potentia	Time Response of R-L-C Circuit, Simple Harmonic Motion ariety of Numerical Approaches, Solution fora Non-Linear, endulum, The Physical Pendulum, Using the Euler-Cromer Laws, Solution of Laplace's Equation Using the Jacobi Time Independent Schrodinger Equation. Shooting Method, truction, Time Dependent Schrodinger Equation in One I Well, Potential Barrier. Leapfrog Method. Uranium Decay.	Hours
	Suggested Readings		
		g in MATLAB by Marc E. Hermitter, Thomson Brooks. rogramming by Rudrapratap. D. Attaway, S.	

3. a Practical Introduction to Programming Problem Solving.	
Edition/Publisher: Third Edition. Elsevier. San Fransisco.	
4. MATLAB: a Practical Introduction to Programming Problem-Solving	
Book by Stormy Attaway, Paperback ISBN: 9780128154793	
Elsevier.Com.	
5. MATLABfor Beginners a Gentle Approach Revised Edition Peter I. Kattan Petra Books.	
6. Getting Started with MATLAB: A Quick Introduction for Scientists	
&Engineers Paperback – 1 January 2010 by Rudra Pratap (Author).	
7. MATLAB Programming for Engineers 6th Edition by Stephen J Chapman, Cengage India.	
8. MATLABwith Applications to Engineering, Physics Finance Hardcover –	
Import, 30 October 2009 by David Baez-Lopez (Author).	
9. Scientific Computing With Matlab And Octave 4Th Edition by Alfio	
Quarteroni and Paola Gervasio and Fausto Saleri, SPRINGER.	
10. Introduction to Octave: For Engineers and Scientists by Sandeep Nagar	
11. MATLAB Guide, Third Edition Desmond J. Higham, Nicholas J.	
Higham.	
12. MATLABfor Engineering Applications William Palm.13. Advanced Programming in Scilab, by Jain.	
14. Scilab A Beginner'S Approach by Anil Kumar Verma, Cengage India.	
15. Scilab from Theory to Practice - I. Fundamentals (English, Paperback,	
Roux Philippe).	
16. Octave/Matlab Primer and Applications, by Nakamura S.	
17. Programming for Computations - MATLAB/Octave, by Linge Svein,	
Publisher: Springer International Publishing AG	
Course Outcomes:	
After successful completion of the course student will be able to use Scientific	
programming for various applications such as Numerical technique, Plotting of	
2D and 3D plots and simplifications of Differential equations.	

	Course Code: MSPHAE301T Course Credit: 2	Course Title: Python Programming Total Contact Hours: 30 Hours	
Sr.			Reqd.
No.	Course Contents (Topics ⋐	otopics)	Hours
<u>No.</u> 1	Unit I Introduction to Python Progra The Python Programming Lar Debugging? Formal Natural La Expressions Statements: Valu Keywords, Statements, Evalua Order of Operations, Operatio Function Calls, Type Conver Composition, Definitions Use, F Variables Parameters Are Local Conditionals Recursion: The M Logical Operators, Conditional H Conditionals, Nested Condition Stack Diagrams for Recursive	mming: nguage. What Is a Program? What Is anguages, The First Program. Variables, es Types, Variables, Variable Names ating Expressions, Operators Operands, ns on Strings, Composition. Functions: sion, Type Coercion, Math Functions, low of Execution, Parameters Arguments, , Stack Diagrams, Functions with Results. Modulus Operator, Boolean Expressions, Execution, Alternative Execution, Chained nals, The Return Statement, Recursion, Functions, Infinite Recursion, Keyboard eturn Values, Program Development,	7 Hours
2	Dimensional Tables, Encapsular Local Variables, More General Data Type, Length, Traversa Comparison, Strings Are Immut The String Module, Character C Elements, List Length, List Men List Slices, Lists Are Mutable, Cloning Lists, List Parameters Tuples: Mutability Tuples, Tup Rom Numbers, List of Rom Nun Pass Solution, Dictionaries: Disc	5, Dictionaries: t, The While Statement, Tables, two- tion Generalization, More Encapsulation, ization, Functions. Strings: A Compound 1 the for Loop, String Slices, String able, a Find Function, Looping Counting, lassification. Lists: List Values, Accessing nbership, Lists for Loops, List Operations, List Deletion, Objects Values, Aliasing, s, Nested Lists, Matrices, Strings Lists. le Assignment, Tuples as Return Values, nbers, Counting, Many Buckets, a Single- ctionary Operations, Dictionary Methods, res, Long Integers, Counting Letters.	8 Hours
3	Exceptions. Classes Objects: Use Arguments, Sameness, Rectang Are Mutable, Copying. Clas Modifiers, Prototype Developm Object-Oriented Features, Print Revisited, Operator Overloadin Objects, Class Attributes the	of Objects: Writing Variables, Directories, Pickling, er-Defined Compound Types, Instances as les, Instances as Return Values, Objects sees Functions: Time Pure Functions, nent Versus Planning. Classes Methods: Time, The Initialization Method, Points ng. Sets of Objects: Composition, Card Str Method, Comparing Cards, Decks, e Deck, Removing Dealing Cards. a H of	8 Hours

Linked Lists, Stacks, Queues, Trees:	7
Linked Lists: Lists as Collections, Lists Recursion, Infinite Lists, the	Hours
Fundamental Ambiguity Theorem, Modifying Lists, the Linked List Class.	
Stacks: Abstract Data Types, The Stack ADT, Implementing Stacks with	
Python Lists, Pushing Popping, Stack to Evaluate Postfix, Parsing,	
Evaluating Postfix. Queues: The Queue ADT, Linked Queue, Performance	
Characteristics, Improved Linked Queue, Priority Queue. Trees: Building	
Trees, Traversing Trees, Expression Trees, Tree Traversal, Building an	
Expression Tree, Handling Errors, The Animal Tree. Debugging: Syntax	
Errors, Runtime Errors, Semantic Errors.	
Suggested Readings	
1. Official Python Web Site: <u>Https://Www</u> .	
2. Python.Org. Think Python by Allen Downey.	
3. Python Programming Fundamentals - a Beginner's Hbook by	
Nischay Kumar Hegde.	
4. Python Programming by M Radhika Mani B N Jagadesh Ch	
Satyanarayana	
Course Outcomes:	
After successful completion of the course student will be able to develop a	
basic understanding of programming the python programming language.	
Familiarization about the basic constructs of programming such as data,	
operations, conditions, loops, functions etc. Students will use their	
problem-solving abilities to implement programs in python. Introduction to	
advanced topics in python such as exception handling, multithreaded	
programming, graphical user interface & database connectivity	

Semester –IV

	Course Code: MSPHCC401T	Course Title: Characterization Techniques	
	Course Credit:4	Total Contact Hours: 60 Hours	
Sr. No.	Course Contents (Topics &Su	ubtopics)	Reqd. Hours
2	Microscopy: Optical Microsco Examination Modes (Bright F Field Illumination, Phase Con	cterization Available Techniques. Optical ope - Basic Principles Components, Different field Illumination, Oblique Illumination, Dark trast, Polarised Light, Hot Stage, Interference oy, Photomicroscopy, Colour Metallography, tions.	15 Hours
2	Electron Microscopy: Electron Microscopy: Interaction Microscopy Transmission E	on of Electrons with Solids, Scanning Electron Electron Microscopy Specimen Preparation ssion Electron Microscopy, Energy Dispersive persive Spectroscopy.	15 Hours
3	X-Rays, Diffraction of X-Ra	ental Crystallography, Generation Detection of ys, X-Ray Diffraction Techniques, Electron is: Atomic Force Microscopy, Scanning Photoelectron Spectroscopy.	15 Hours
4	Fourier Transform Infrared S Analysis: Thermo Gravimetr	tion Spectroscopy, UV/Visible Spectroscopy, Spectroscopy, Raman Spectroscopy. Thermal ic Analysis, Differential Thermal Analysis, orimetry, Thermo Mechanical Analysis	15 Hours
	 Li, Lin, Ashok Kuma Zhang; Crc Press, (200 Cullity, B.D., Stock, R. Hall, (2001). Murphy, Douglas B, H Imaging,Wiley-Liss, In Tyagi, A.K., Roy, I Advanced Techniques Science Foundations (N Wendlt, W.W., Therma Wachtman, J.B., Kal Butterworth Heinemant Course Outcomes: Students will be able To1. Ap for Microstructure Examinatio 	S., "Elements of X-Ray Diffraction", Prentice- Fundamentals of Light Microscopy Electronic Ic. USA, (2001). Mainak, Kulshreshtha, S.K., Banerjee, S., s for Materials Characterization, Materials Monograph Series), Volumes 49 – 51, (2009). Id Analysis, John Wiley & Sons, (1986). Iman, Z.H., Characterization of Materials,	

High	Resolution 3. Determine Crystal Structure of Specimen Estimate its
Crysta	Illite Size Stress 4. Use Appropriate Spectroscopic Technique to
Measu	re Vibrational / Electronic Transitions to Estimate Parameters Like
Energ	y B Gap, Elemental Concentration, etc. 5. Apply Thermal Analysis
Techn	iques to Determine Thermal Stability of Thermodynamic Transitions of
the Sp	ecimen.

	Course Code: MSPHCC402T	Course Title: Nuclear Physics	
	Course Credit: 4	Total Contact Hours: 60 Hours	
Sr. No.	Course Contents (Topics &Subt	topics)	Reqd. Hours
1	Unit I		15
	Mass, Size, Spin, Magnetic Mom Energy, Binding Energy Per Nu Number of the Nucleus, Coulomb Energy, Volume Ener Measurement of Nuclear Size H Method), Nuclear Quantum Num Moment, Parity, Iso Spin Nuclear Forces: two Nucleon S Properties, Nuclear Potential We Theory of Nuclear Forces, Mirro Gamma Rays. Nuclear Models: Shell Model	position, Basic Nuclear Properties; Charge, ent, Electric Quadrupole Moment, Binding ucleon its Observed Variation with Mass ergy, Surface Energy Other Corrections. Estimation of R_0 (Mirror Nuclei Mesonic bers, Angular Momentum, Nuclear Dipole ystem, Deuteron Problem its Ground State ell, Pp Pn Scattering Experiments, Meson or Nuclei, Nuclear Energy Levels, Nuclear l, Introduction, Assumptions, Evidences,	Hours
	Limitations. Liquid Drop Model,	· · · · · · · · · · · · · · · · · · ·	
2	Methods of Measurement of Hal Beta Decay, Fermi Theory of Bet Neutrino Antineutrino. Nuclear	pha Decay, Decay Constant Half Life, f Life, Geiger-Nuttal Law, Introduction to a Decay, Fermi-Kurie Plot, Selection Rule, r Radiation. Gamma Decay, Multipole mma Ray Transitions, Gamma Interaction action with Matter	15 Hours
3	Unit III		15
	Nuclear Reactions: Conservation Theorems, Q Val Nuclear Reactions, Introduction	ue, Threshold Energy, Cross Section of n to Fission, Characteristics of Fission, Fission Reaction, Introduction to Fusion n, Solar Fusion CNO Cycle.	Hours
4	Unit IV	· · · · ·	15
	Hyperons, Mass Life Time Detern Introduction to Elementary Partic Model, The Stard Model, Revision Electro Dynamics, Introduction Interactions Unification Scheme Lorentz Transformation, Four V Neutrino, Helicity of Neutrino, Violation in Beta Decay Wu's Exp	iscovery of Muon, Pion, Heavy Mesons mination for Muon Pion, the Physics, the Eight-Fold Way, the Quark on of Four Forces, Introduction to Quantum in to Quantum Chromodynamics, Weak es (Qualitative Description), Revision of Vectors, Energy Momentum, Properties of Parity, Qualitative Discussion on Parity	Hours
	Suggested Reading: 1. Introductory Nuclear Phys	sics by Kenneth Karne, Wiley India Pvt.Ltd	
	 Nuclear Physics by Kapla Concepts of Nuclear Phys 	n	

Robert Eisberg Robert Resnick Willy(2006).	
5. Introduction to Elementary Particles Bydavid Griffith, John W	lley
Sons.	
6. Elements of Nuclear Physics by Meyeroff	
7. Nuclear Physics: S. N Ghoshal	
8. Nuclear Physics: Roy Nigam	
9. Nuclear Physics: S.B. Patel	
Course Outcomes:	
Students will able to Understand the Structure Properties of the Nucleus	s, the
Concept of Nuclear Forces, The Various Nuclear Models the Nu	clear
Reactions. This Course Also Introduces the Cosmic Rays the Element	ntary
Particle Physics to the Students.	

MSPHDE401Tand Optical Fibre CommunicationCourse Credit:4Total Contact Hours: 60 HoursCourse Contents (Topics & Subtopics)Unit IMicrowave Measurements: Frequency Measurements, Measurement of Power, Attenuation Measurements, Measurement of Phase Shift, Measurement of Voltage Sting Wave Ratio VSWR, Measurement of Impedance, Measurement of Insertion Loss, Measurement of Dielectric Constant, Measurement of Noise Factor, Measurement of Q of a Cavity Resonator.Unit IIMicrowave Antennas: Introduction, Antenna Parameters (Directive Gain, Power Gain, Directional Pattern), Beam Width, Bandwidth, Polarization, Impedance,	Reqd. Hours 15 Hours 15 Hours
Course Contents (Topics & Subtopics)Unit IMicrowave Measurements: Frequency Measurements, Measurement of Power, Attenuation Measurements, Measurement of Phase Shift, Measurement of Voltage Sting Wave Ratio VSWR, Measurement of Impedance, Measurement of Insertion Loss, Measurement of Dielectric Constant, Measurement of Noise Factor, Measurement of Q of a Cavity Resonator.Unit IIMicrowave Antennas: Introduction, Antenna Parameters (Directive Gain, Power Gain,	Hours 15 Hours 15
Unit IMicrowave Measurements:Frequency Measurements, Measurement of Power, AttenuationMeasurements, Measurement of Phase Shift, Measurement of VoltageSting Wave Ratio VSWR, Measurement of Impedance, Measurement ofInsertion Loss, Measurement of Dielectric Constant, Measurement ofNoise Factor, Measurement of Q of a Cavity Resonator.Unit IIMicrowave Antennas:Introduction, Antenna Parameters (Directive Gain, Power Gain,	Hours 15 Hours 15
Microwave Measurements:Frequency Measurements, Measurement of Power, AttenuationMeasurements, Measurement of Phase Shift, Measurement of VoltageSting Wave Ratio VSWR, Measurement of Impedance, Measurement ofInsertion Loss, Measurement of Dielectric Constant, Measurement ofNoise Factor, Measurement of Q of a Cavity Resonator.Unit IIMicrowave Antennas:Introduction, Antenna Parameters (Directive Gain, Power Gain,	Hours
Frequency Measurements, Measurement of Power, Attenuation Measurements, Measurement of Phase Shift, Measurement of Voltage Sting Wave Ratio VSWR, Measurement of Impedance, Measurement of Insertion Loss, Measurement of Dielectric Constant, Measurement of Noise Factor, Measurement of Q of a Cavity Resonator. Unit II Microwave Antennas: Introduction, Antenna Parameters (Directive Gain, Power Gain,	15
Microwave Antennas: Introduction, Antenna Parameters (Directive Gain, Power Gain,	
Introduction, Antenna Parameters (Directive Gain, Power Gain,	Hours
Aperture), Types of Antennas (Hertz, Dipole Marconi Antennas, Yagi-Uda Antenna, Rhombus Antenna, Parabolic Reflector Antenna, Lens Antenna, Horn Antenna, Helical Antenna, Slot Antenna)	
Unit III	15
 Microwave Integrated Circuits: MMIC: Monolithic Microwave Integrated Circuits-Materials Used for MMIC's Fabrication (Substrate Materials, Conductor Materials, Dielectric Materials, Resistive Materials), MMIC Fabrication Techniques-Thin Film Formation (Planner Resistor Film, Planer Inductor Film, Planer Capacitor Film), Hybrid Integrated Circuit Fabrication. Planar Transmission Lines: Strip Line, Microstrip Lines (Advantages Limitations of Microstrip Lines, Characteristics Impedance of Microstrip Line, Effective Dielectric Constant, Losses in Microstrip Lines 	Hours
Unit IV	15
Optical Fibre Communication Systems: Introduction to Optical Fibers, Signal Degradation in Optical Fibers, Fiber Optical Sources Coupling, Fiber Optical Receivers, System Parameters, Analog Optical Fiber Communication Links, Design Procedure, Multichannel Analog Systems, FM/FDM Video Signal Transmission, Digital Optical Fiber Systems.	Hours
	Aperture), Types of Antennas (Hertz, Dipole Marconi Antennas, Yagi-Uda Antenna, Rhombus Antenna, Parabolic Reflector Antenna, Lens Antenna, Horn Antenna, Helical Antenna, Slot Antenna) Unit III Microwave Integrated Circuits: MMIC: Monolithic Microwave Integrated Circuits-Materials Used for MMIC's Fabrication (Substrate Materials, Conductor Materials, Dielectric Materials, Resistive Materials), MMIC Fabrication Techniques-Thin Film Formation (Planner Resistor Film, Planer Inductor Film, Planer Capacitor Film), Hybrid Integrated Circuit Fabrication. Planar Transmission Lines: Strip Line, Microstrip Lines (Advantages Limitations of Microstrip Lines, Characteristics Impedance of Microstrip Line, Effective Dielectric Constant, Losses in Microstrip Lines Unit IV Optical Fibre Communication Systems: Introduction to Optical Fibers, Signal Degradation in Optical Fibers, Fiber Optical Sources Coupling, Fiber Optical Receivers, System Parameters, Analog Optical Fiber Communication Links, Design Procedure, Multichannel Analog Systems, FM/FDM Video Signal Transmission,

Applied Electronics- Sem. IV- Paper III

communication system.		
measure microwave powers using different microwave components. They will get acquainted with different type of antennas optical fibre		
microwave frequencies using x-b microwave set up. They will be able to		
After studying this course, the students will be able to do measurement at		
Course Outcomes:		
	Optical Fiber Communication by G. Keiser.	
	Advanced by Wayne Tomasi Singapore.	
8.	Electronic Communication Systems Fundamentals Through	
	Singapore.	
7.	Optical Fiber Comm.by Gerd Keiser; Mcgraw-Hill International,	
	Mcgraw Hill Education.	
	Antennas Wave Propagation by Kraus, R. J. Marhefkaa. S. Khan,	
5.	Antenna Wave Propagation by Das Das, Mcgraw Hill Education.	
т. 	Hill.	
4	Electronics Communication System –by Kennedy George, Mcgraw	
5.	Microwave Engineering- by Sanjeev Gupta, Khanna Publication, New Delhi.	
	Raghuvanshi, Wiley Eastern Limited, New Delhi.	
2.	Microwave Circuits Passive Devices-by M.L. Sisodia &G.S.	
	ofGredia Private Limited, New Delhi.	
1.	Microwave Devices Circuits- bySamuley Y. Liao, Prentice Hall	

	Course Code	Course Titler	
	Course Code:	Course Title:	
	MSPHDE402T	Microprocessor and Microcontroller	
0	Course Credit: 4	Total Contact Hours: 60 Hours	D 1
Sr. No.	Course Contents (Topics & Subtopics)		Reqd. Hours
1	Unit I		15
	Architecture of Microprocessor 8085: Intel 8085- Block Diagram, ALU, Timing Control Unit, Registers, Data Address Bus, Pin Configuration, Instruction Word Size, Instruction Cycle, Fetch Operation, Execute Cycle, Machine Cycle State, Instructions Data Flow, Timing Diagram, Memory Read, I/O Read, Memory Write, I/O Write.		Hours
2	Unit II		15
	Programming of Microprocessor 8085 Data Transfer Techniques: Introduction, Instruction Set for 8085, Programming of 8085, Assembly Language Programming (Data Transfer, Arithmetic, Branching, Logical Group). Programmed Data Transfer, Synchronous, Asynchronous Interrupt Drivers Modes, DMA, Serial Data Transfer.		Hours
3	Unit III		15
	Microprocessor 8086: Architecture of 8086, Pin Diagram Pin Function, Register Organization, Minimum Maximum Mode of 8086, Microprocessor 80286, 80386 (Block Diagram)		Hours
4	Unit IV		15
	Micro-Controller 8051: Introduction to 8- Bit Micro-Controller, Architecture of 8051 Signal Description of 8051, Register Set of 8051, Important Operational Features of 8051, Memory I/O Addressing by 8051, Interrupts of 8051, Instructions Set of 8051, Programming of 8051 (Simple Arithmetic Logical Programs).		Hours
	Suggested Readings:		
	 Delhi. 2. Introduction to Microprocessor 3. Microprocessor Archit with8086 / 8080- R. Gaon 4. Advanced Microprocesson 5. Advanced Microprocesson Tata Mc Graw Hill Public 	ecture, Programmining Applications	
	Course Outcomes:		
	binary math operation s using microprocessor's microcontroll apply knowledge demonstrate various addressing modes date microprocessor microcontroller select appropriate assemble into	dent will be able to assess solve basic ing the microprocessor explain the er's internal architecture its operation, e programming proficiency using the ata transfer instructions of the target r, analyze assembly language programs, o machine across assembler utility of a er, design electrical circuitry to the	

Applied Electronics- Sem. IV- Paper IV

microprocessor i/o ports in order to interface the processor to external	
devices, evaluate assembly language programs download the machine	
code that will provide solutions to the real-world control problems	

Sem. IV Applied Electronics Lab -2

	Course Code: MSPHLB401P	Course Title:AppliedElectronicsLab-2MinimumNumberofExperimentstobePerformedReportedintheJournal = 10	
	Course Credit: 4	Total Contact Hours: 120 Hours	
Sr. No.	List of Experiments		
		GROUP-a (Minimum 05)	
1	Coefficient of Given	Voltage Sting Wave Ration (VSWR) Reflection Load Using X-B Microwave Setup	
2	To Study Characterist	tics of Gunn Diode Using X-B Microwave Setup	
3	To Study the Radiation X-B Microwave Setu	on Pattern Gain of Waveguide Horn Antenna Using	
4	To Study Properties of	f Microwave Magic Tee Using Microwave Setup.	
5	Loss Measurements N	Jumerical Aperture in Optical Fiber.	
6	Linear Control Syster	n Using Fiber Optical Communication Method.	
7	Telemetry Using Opt	cal Fiber System.	
8	Attenuation Measurer	nent using Micro wave bench set up	
9	To Study E Plane and	H Plane Radiation Pattern of Horn Antenna	
10	Measurement of Gain	of an antenna using Mirror Method	
	GROUP-B (Minimum 05)		
11	Write Assembly Lang of Data.	guage Programme for Ascending /Descending Order	
12	Write an Assembly L	anguage Programme to Transfer Data Bytes.	
13	Write an Assembly Number.	Language Programme to Find Out Smaller Larger	
14	Write Assembly Lang	guage Programme for Generation of Square Wave	
15	Write an Assembly Operations.	Language Programme for Various Arithmetic	
16		guage Programme for Different Logical Operations.	
17	Write an Assembly Language Programme to Find the 1's Compliment 8 Bit 16 Bit Number Using 8051 Microcontroller.		
18	Write an Assembly I	anguage Programme to Find the 2's Compliment 8 sing 8051 Microcontroller.	
19	Write an Assembly Using 8051 Microcor	Language Programme for Addition Verification by troller.	
20	Interfacing of Seven S	Segment Display.	

Sem. IV Applied Electronics Project-02

	Course Code:	Course Title: Project-02	
	MSPHPR401P Course Credit: 4	Total Contact Hours:	
		120 Hours	
Sr. No.	List of Experiments		
	Research Level	Project	

	Course Code:	Course Title:	
	MSPHDE403T	Physical Properties of Solids	
		ingstear i topet ties of Solius	
	Course Credit: 4	Total Contact Hours: 60 Hours	
Sr. No.	Course Contents (Topics &Su	ubtopics)	Reqd. Hours
1	Unit I		15
	Optical Dielectric Properties: Maxwell's Equations the Die Local Field the Frequency Polarization Catastrophe, Kraemers' Kronig Relations Plasmons in Simple Metals,	electric Function, Lorentz Oscillator, the Dependence of the Dielectric Constant,	Hours
2	Unit II		15
	Time, Electrical Conductivity	Mass, The Boltzmann Equation Relaxation of Metals Alloys, Mathiessen's Rule, dmann-Franz Law, Lorentz Number, AC c Effects.	Hours
3	Unit III		15
	Atomic Moments, Heisenberg Electron Magnetism, Stoner Exchange Mechanism: Superex Magnetic Phase Transition: Introduction to Ising Model Re Types of Magnetic Order: Metamagnetism, Spinglasses. Magnetic Phenomena: Hysteresis, Magnetostriction Magneto-Optic Effect. Magnetic Materials: Soft Hard Magnets, Permanent	, Basic Types of Magnetic Order Origin of Exchange Interaction, Localized Itinerant Criterion for Ferromagnetism, Indirect a change Rkky. esults Based on Mean Field Theory, Other Superparamagnetism, Helimagnetism,	Hours
4	Effect. Electrodynamics of Super Thermodynamics of the Super Entropy Specific Heat Jump. Ginzburg-Lau Theory of S Parameter Classification into T State of Superconductors. Microscopic Theory: The Coo	nductivity: Perfect Conductivity Meissner erconductivity: London's Equations, conducting Phase Transition: Free Energy, Superconductivity: GL Equations, GL 'ype I Type II Superconductors, the Mixed oper Problem, The BCS Hamiltonian, BCS : DC AC Effects, Quantum Interference.	15 Hours

Solid State Physics - Sem IV- Paper III

Superconducting Materials Applications: Conventional High Tc	
Superconductors, Superconducting Magnets Transmission Lines, Squids.	
Suggested Readings:	
1. Solid State Physics, H. Ibach H. Luth, Springer (Berlin) 2003 (II).	
2. Solid State Physics, Neil Ashcroft David Mermin (Am).	
3. Introduction to Solid State Physics (7th/ 8th Ed) Charles Kittel	
(K).	
4. Principles of Condensed Matter Physics, ChaikinLubensky (Cl).	
5. Condensed Matter Physics, Michael P. Marder, Wiely, 2 nd Edition.	
6. Fundamentals of Carrier Transport, Mark Lundstorm, Cambridge	
University Press, 2 nd Edition.	
7. Optical Properties of Solids, Frederick Wooten, AC Press (New	
York) 1972 (FW).	
8. Electrons Phonons, J M Ziman.	
9. Electron Transport in Metals, J.L. Olsen.	
10. Physics of Magnetism Magnetic Materials, K.H.J. Buschow F.R.	
De Boer.	
11. Introduction to Magnetism Magnetic Materials, D. Jiles.	
12. Magnetism Magnetic Materials, B. D. Cullity.	
13. Solid State Magnetism, J. Crangle.	
14. Magnetism in Solids, D. H. Martin.	
15. Superconductivity Today, T.V. Ramakrishnan C.N.R.Rao	
Course Outcomes:	
Students will be able to learn the various properties of solids viz. Optical,	
dielectric, magnetic, thermal electrical. The understanding of physics of	
these properties will be useful for applications of the solids.	

	Course Code:	Course Title:	
	MSPHDE404T	Physics of Nanomaterials	
	Course Credit: 4	Total Contact Hours: 60 Hours	
Sr. No.	('ourse ('ontents (l'onies X/Nubtonies)		Reqd. Hours
1	Unit I		15
	Crystal Bonding, Structure, Growth and Symmetries: Background of Nanoscience Nanotechnology, Definition, Crystal Bonding, Crystal Structure, Crystal Growth Classification of Crystals by Symmetry, Some Important Crystal Structure		Hours
2	Unit II		15
	Band Structure and Density o Introduction, Energy Bs, Struc Semiconductors, Density of Stat	ture of Energy Bs of Metals, Insulator,	Hours
3	Unit III		15
	Electrical Transport in Nanostructure: Electrical Conduction in Metals, The Drude Model, The Free Electron Model, Conduction Mechanism in Insulators Ionic Crystals, Electron Transport in Semiconductors, Conduction Mechanisms in 3d,2d Low Dimensional Systems, Pool Frankel Effect, Arrhenius Type Thermally Activated Conduction, Hopping Conduction, Polaron Conduction		Hours
4	Unit IV		15
	Model of Hydrogen Atom, D Associated with Electron, Unco its applications.	nics for Nanoscience: Iller Systems, Quantum Behaviour: Bohr, e Broglie Wavelength, Wave Function ertainty Principle, Schrodinger Equation	Hours
	Suggested Readings:		
	Chattopadhyay, A. N. Ba	noscience Nanotechnology, K. K. anerjee, PHI. ace Nanotechnology B. S. Murthy Et. Al,	
	Course Outcomes:		
	from bulk materials as com	sics of Nanomaterial. How it is different pare to crystal structure, density, bs xposed to the quantum mechanical	

Solid State Physics – Sem. IV- Paper IV

	Course Code: MSPHLB402P	Course Title: Solid State Physics Lab -2 Minimum number of experiments to be performed and reported in the journal =10	
	Course Credit: 4	Total contact hours: 120 Hours	
Sr. No.	Lis	t of Experiments	
	GRO	UP-a (Minimum 05)	
1	Fe ⁵⁷ Mossbauer spectra: Calibration <i>a</i> field.	and determination of isomer shift and hyperfine	
2	Determination of isomer shift in stain	less steel using Mossbauer spectra.	
3	B-H loop in low magnetic fields(dc at	nd ac methods).	
	Hysteresis of ring-shaped ferrite.		
4	Determination of Curie/Neel temperation	ture.	
5	Susceptibility of paramagnetic salt by	Guoy's method.	
6	Resistivity of metallic alloy specimen		
7	Study of percolation limit by resistivity measurement of ceramic.		
8	I-V at different temperatures of differ	rent diodes.	
9	C-V at room temperature and determination of barrier height.		
10	Solar Cells :I-V characteristics and sp		
11	Infrared detector characteristics and s		
12	Optical fibers- Attenuation and disper		
		JP-B (Minimum 05)	
13	MR of Semiconductor, Bismuth and I	LSMO (Manganate) specimen.	
14	XPS analysis of given sample.		
15	Study of Raman Spectra of given mat	erials.	
16	Ceramic synthesis of BaTiO3.		
17	Thermoelectric power of thin film		
18	Contact angle measurement of thin fi	lm	
19	Brinell hardness		
20	Corrosion study of given material.		
21	Chemical Bath deposition of CdS.		
23	SEM and EDAX analysis of given sa		
24	Successive Ionic Layer Adsorption an	nd Reaction.	
25	Computer program for file handling.		

Sem. IV - Solid State Physics Lab -2

Sem. IV Solid State Physics Project-02

	Course Code:	Course Title: Project-02	
	MSPHPR402P		
	Course Credit: 4	Total Contact Hours:	
		120 Hours	
Sr. No.	List of Experiments		
	Research Leve	Project	

	Course Code:	Course Title:	
	MSPHDE405T	Semiconductor Technology	
	Course Credit: 4	Total Contact Hours: 60 Hours	
Sr. No.	Course Contents (Topics &S		Reqd. Hours
1.	Unit I		15
	 Crystal Growth Epitaxy: (A) Crystal Growth: Czochralski Technique, Bridgman Technique, Float Zone Process, Zone Refining, Zone Levelling. (B) Epitaxy Vapour Phase Epitaxy (VPE), Liquid Phase Epitaxy (LPE, Molecular Beam Epitaxy (MBE), Mocvd, Heteroepitaxy, Growth of III-V Compound Semiconductors, Growth of Silicon on Insulator (SOI) Structures. (C) Oxidation Film Deposition: Oxide Formation, Kinetics of Oxide Growth, Thin Oxide Growth, Oxidation Systems. 		Hours
2.	Unit II		15
	 Diffusion and Ion-Implantation: Diffusion: Nature of Diffusion, Basic Diffusion Theory, Extrinsic Diffusion, Diffusion Related Physical Processes, Boron Diffusion System, Phosphorus Diffusion System. (A) Ion-Implantation: Range of Implanted Ions, Ion Distribution, Ion Stopping, Ion Channelling, Radiation Damage Annealing, Implantation Related Processes, Evaluation Techniques for Epitaxial Layer, Diffused Layer Implanted Layer Oxide Layer. 		
3.	Unit III		15
	Optical, Electron beam, X- Ray	oom, Masking, Photoresist, Passivation, y & Ion-Beam Lithography. ching, Dry Etching, Plasma Etching.	Hours
4.	Unit IV		15
	Circuit Resistor, Capacitor Bipolar Circuit Fabrication, Bi MESFET Technology, Fundar Technology; Simulation.	rication: Passive Components-Integrated Inductor. Bipolar Technology: Discrete ipolar Technology, MOSFET Technology, nental Limits of Integrated Devices, ULSI	Hours
	Suggested Readings:		
	 Wiley, 1985. 2. Integrated Circuits R.M.Warner, Motorola 3. K. Martin, Digital Integress, Ymca, New Dell 4. E.L. Wolf, Nanophyst Weinheim, 2004. 5. S.K. Ghhi, The Theory Sons. 	 actor Devices-Physics Technology, John (Design Principles &Fabrication) – Series in Solid State Electronics. egrated Circuit Design Oxford University hi, 2004. ics Nanotechnology, Wiley-Vch Verlag, Practice of Microelectronics, John Wiley blogy, Mc Graw Hill Book, N.Y., 2nd Ed. 	

Solid State Electronics- Sem. IV- Paper III

7. S.K. Ghhi, Vlsi Fabrication Principles, John Wiley, N.Y., 1983	
Course Outcomes:	
Students able to Understand the current voltage characteristics of semiconductor devices. Analyze dc circuits relate ac models of semiconductor devices with their physical operation. Classify different semiconductor memories. Able to analyze find applications limitations of microwave semiconductor devices.	

		a m'i	
	Course	Course Title:	
	Code:MSPHDE406T	Physics of Semiconductors Devices	
G	Course Credit: 4	Total Contact Hours: 60 Hours	D 1
Sr. No.	Course Contents (Topics & Subtopics)		Reqd. Hours
1.	Unit I		15
	Transport Properties of Semiconductors: The Boltzmann Transport Equation its Solutions for (I) Electric Field Alone (II) Electric Magnetic Fields Together. Hall Effect Magneto Resistance (Van Der Ziel). Scattering Mechanism Relaxation Time Concept, Transport in High Electric Fields, Hot Electrons (Wang), Transferred Electron Effects (Smith). Transport in 2- Dimensional Quantum Well - (a) High Field Effects (I) Lau Levels, (II) Shubnikov De Hass Effect, (III) Quantum Hall Effect (B) Perpendicular Transport - Resonant Tunnelling (Js- Art.17.3, 17.6, 17.7, 14.9).		Hours
2.	Unit II		15
	Absorption, Impurity Absor Recombination. Photoconductivity. Surface I	onductors: onductors: Fundamental Absorption, Exciton ption, Free Carrier Absorption. Radiative Recombination (Smith). Optical Processes in sitions in Quantum Wells,Intrab Transitions	Hours
3.	Unit III		15
	Amorphous & Organic Semiconductors: Electronic Density of States, Localization, Transport Properties, Optical Properties, Hydrogenization of Amorphous Silicon, Si:H Fields Effect Transistors-Design, Fabrication Characteristics. Organic Semiconductors, Polymers.		
4.	Unit IV		15
	Magnetic Semiconductors,	& Materials, Spintronics Materials, Dilute Magnetites, Giant-Magneto Resistance. ics, Liquid Crystals-Introduction to Liquid	Hours
	Suggested Readings:		
	 Prentice-Hall, New De 2. S.Y. Wang, Introduct 1980. 3. R. A. Smith, Semicor Press, London, 1978. 4. Jasprit Singh, Physics Mcgraw-Hill, New Ye 5. M.H. Brodsky (Ed), T Semiconductors. 	tion to Solid State Electronics, North Holl, nductors, 2nd Edition; Cambridge University s of Semiconductors Their Heterostructures,	

Solid State Electronics- Sem. IV- Paper IV

7. C.S. Solanki, Solar Photovoltaics-Fundamentals, Technologies Applications, Phi Lpl, New Delhi, 2009.	
Course Outcomes:	
Student who successfully fulfils the course requirements will be able to demonstrate and utilize semiconductor models to analyze carrier densities carrier transport. An ability to understand utilizes the basic governing equations to analyse semiconductor devices. An ability to understand analyse the inner working of semiconductor p-n diodes, Schottky barrier diodes new semiconductor devices.	

	Course Code: MSPHLB402P	Course Title: Solid State Electronics Lab -2 Minimum number of experiments to be
		performed and reported in the journal =10
	Course Credit: 4	Total contact hours: 120 Hours
Sr. No.	List of Fyneriments	
	GRO	UP-A (Minimum 05)
1	hyperfine field.	on and determination of isomer shift and
2	Determination of isomer shift in st	tainless steel using Mossbauer spectra.
3	B-H loop in low magnetic fields (dc and ac methods).
	Hysteresis of ring-shaped ferrite.	
4	Determination of Curie/Neel temp	erature.
5	Susceptibility of paramagnetic sal	
6	Resistivity of metallic alloy specir	
7	Study of percolation limit by resistivity measurement of ceramic.	
8	I-V at different temperatures of different diodes.	
9	C-V at room temperature and dete	
10	Solar Cells :I-V characteristics an	
11	Infrared detector characteristics and	
12	Optical fibers- Attenuation and di	*
		UP-B (Minimum 05)
13	MR of Semiconductor, Bismuth a	nd LSMO (Manganate) specimen.
14	XPS analysis of given sample.	
15	Study of Raman Spectra of given	materials.
16	Ceramic synthesis of BaTiO3.	
17	Thermoelectric power of thin film	
18	Contact angle measurement of thi	n film
19	Brinell hardness	
20	Corrosion study of given material	
21	Chemical Bath deposition of CdS	
23	SEM and EDAX analysis of given	
24	Successive Ionic Layer Adsorptio	
25	Computer program for file handlin	ng.

Sem. IV- Solid State Electronics Lab -2

	Course Code:	Course Title: Project-02	
	MSPHPR403P		
	Course Credit: 4	Total Contact Hours: 120	
		Hours	
Sr. No.	List of Experiments		
	Research Level I	Project	

Sem. IV Solid State Electronics Project-02

	Course Code:	Course Title:	
	MSPHDE407T	Applications of Materials	
	Course Credit: 4	Total Contact Hours: 60 Hours	
Sr.	Course Co	ontents (Topics & Subtopics)	Reqd.
No.		(Hours
1	Unit I		15 Hauna
	Ceramics Composites: Structure of Simple Ceramics, Silicate Structures, Materials Preparation, ferroelectric ceramics: barium titanate, PZT, PLZT materials, magnetic ceramics: spinel ferrites, zinc ferrites, garnets, superconducting ceramics: varistors,Bioceramic materials, high temperature applications, ceramic fibers, Glasses, Composites: Introduction, General Characteristics, Particle-Reinforced Composites, Fibre -Reinforces Composites.		Hours
2	Unit II		15
	of Polymerization, synt polymerization, chain gro techniques, ordering of po elasticity – dynamic mecha viscoelastic behaviour – Bo	Polymerization Mechanism, Degree	Hours
3	Unit III		15
		0	Hours
4	Unit IV		15
	,Graphene and other carbon Applications, Electronic	erene, Fabrication of CNTs and CNFs n nanomaterials - Mechanical, Thermal	Hours
	Suggesten Neanings:		
	Edition. 2. M.A. Wahab; Solid Materials, Alpha Sci 3. Materials Science: Graw Hill. 4. Materials Science & Hill.	Kakani, New Age International, 2 nd State Physics: Structure Properties of ence International (2005). V. Rajendran, A. Marikani, Tata Mc Engineering: Raghavan, Tata Mc Graw Nanotechnology", byAnke Krueger,	

Materials Science- Sem. IV- Paper III

Wiley-Vch,2010.6. YuryGogotsi, "Carbon Nanomaterials", Taylor Francis, 2006.	
Course Outcomes:	
Students will come to know different materials and its applications in their day-to-day life as well as in industry.	

	Course Code: MSPHDE408T	Course Title: Properties of Materials	
	Course Credit: 4	Total Contact Hours: 60 Hours	
Sr. No.	Course	Contents (Topics &Subtopics)	Reqd. Hours
1	Unit I		15
	Mechanical Properties		Hours
	Introduction, Common	· · · · · · · · · · · · · · · · · · ·	
		as a Parameter of Design, Fundamental	
		Factors Affecting Mechanical Properties,	
		Destructive Testing (NDT),Fracture.	
2	Unit II		15
	Oxidation Corrosion:		Hours
	Introduction, Corrosion- resistant Materials, Electrochemical, Corrosion, Galvanic (Two Metal) Corrosion, Corrosion Rates, High		
	Temperature Oxidation		
	Environmental Effects, Specific Forms of Corrosion, Corrosion Prevention and Control, Corrosion Monitoring and Management.		
3	Unit III	Conosion Monitoring and Management.	15
5	Thermal Optical Properties of Materials:		Hours
	Thermal Properties: Introduction, Heat Capacity, Theoretical		nours
	Models, Thermal Expansion, Thermal Conductivity (K),		
	Refractories, Thermal Stresses, Thermal Fatigue, Thermal Shock,		
	Melting Point (M.P.) Optical Properties: Optical Properties,		
	Interactions of Light with Solids, Atomic and Electronic		
	Interactions, Optical Pro	operties of Non-Metals, Optical Properties	
	of Non- Metals, Applicat	ion of Optical Phenomena.	
4	Unit IV		15
	Electrical Magnetic Properties of Materials:		Hours
		Conduction, Electrical Conductivity,	
		Conduction, Band Structure in Solids,	
	Conduction in Terms of Band and Atomic Bonding Models,		
		Metals, Electrical Characteristics of Alloys	
		Purpose, Mechanism of Strengthening in	
	Metals, Insulators, Dielec	etrics, Magnetism	
	Suggested Readings:		

Materials Science- Sem. IV- Paper IV

1. S. L. Kakani Amit Kakani, Materials Science, 2 nd Edition,	
New AgeInternational Publisher materialsScience.	
2. Kwan Chi Kao F. R. De Boer;Dielectric Phenomena in	
Solids, Elsevier Academic Press (2004).	
3. J. P. Srivastava, Elements of SolidState Physics, 2 nd Edi	
Prentice – Hall of India(P) Ltd. (2007).	
4. Charles Kittle; Introduction to Solid State Physics, 7 th	
Edition, John Wiley&Sons, (1996).	
5. Saxena, Gupta, Saxena; Fundamentals of Solid-	
State Physics, PragatiPrakashan, (2012). A. J. Dekkar; Solid	
State Physics, 1 st Ed. Macmillan (2000).	
6. Neil W. Ashcroft, N. David Mermin, Solid State Physics;	
SaundersCollege, (1976).	
Course Outcomes:	
Students will come to know the different properties of materials	
viz. Electrical, magnetic, optical, thermal mechanical properties.	
Understanding of these properties will be useful for applications of	
these materials.	

	Course Code:	Course Title: Materials Science Lab -2	
	MSPHLB404P	Minimum number of experiments to be	
		performed and reported in the journal =10	
	Course Credit: 4	Total contact hours: 120 Hours	
Sr.		List of Experiments	
No.		*	
		GROUP-A (Minimum 05)	
1	Corrosion study of	given material.	
2	Brinell hardness		
3		of given semiconducting material	
4	Hysteresis of ring-sl	*	
4	Determination of Cu	rie/Neel temperature.	
5	Susceptibility of par	amagnetic salt by Guoy's method.	
6	Resistivity of metall	ic alloy specimens with varying temperatures.	
7	Study of percolation	limit by resistivity measurement of ceramic.	
8	Synthesis of Porous		
9	Sensor specification	study	
10		ature and determination of barrier height.	
11	Solar Cells: I-V cha	racteristics and spectral response.	
12	Infrared detector ch	aracteristics and spectral response.	
		GROUP-B (Minimum 05)	
13	MR of Semiconduc	or, Bismuth and LSMO (Manganate)specimen.	
14	XPS analysis of giv	1	
15		ectra of given materials.	
16	Ceramic synthesis of		
17	Thermoelectric pow	er of thin film	
18	Contact angle meas		
19		nic composite materials	
20		optical wave guide methods	
21	Chemical Bath depo		
23		alysis of given samples	
24		yer Adsorption and Reaction.	
25	Computer program	for file handling.	

Sem. IV Materials Science Lab -2

Sem. IV Materials Science Project-02

	Course Code:	Course Title: Project-02	
	MSPHPR404P		
	Course Credit: 4	Total Contact Hours:	
		120 Hours	
Sr. No.	List of Experiments		
	Research Level	Project	

	Course Code: MSPHSE401T	Course Title: Materials for Energy	
	MSPHSE4011		
	Course Credit: 4	Total Contact Hours: 60 Hours	
Sr. No.	Course Co	ntents (Topics &Subtopics)	Reqd. Hours
1	Unit I:		15 Hours
	semiconductor physics a recombination in semicor semiconductor and hetero junc and characterization, Current Advancement in photovoltaic r	y conversion, Fundamentals of nd photovoltaic cells, Generation- nductors, p-n junction, metal- ction, Photovoltaic device fabrication status of silicon based solar cells, esearch and design of new generation ot, dye-sensitized and perovskite solar	
2	Unit II		15 Hours
3	One inBatteries & Supercapacitors:Basic concepts of Batteries, Supercapacitors and Fuel cells, Thermodynamics and kinetics involved in electrochemical reactions, Primary and rechargible batteries, Li-ion Battery, Components and processes in batteries (Battery operations), Cell characterization: (Charging/discharging cycles, overpotential, battery capacity, state of charge, state of health, impedance spectroscopy), Large scale applications, Different types of supercapacitors (Electrochemical double layer capacitor, pseudocapacitor and hybrid capacitor), Components of supercapacitors, Elecetrochemical properties (Charging/discharging cycles, Cyclic Voltametry and impedance spectroscop, lifetime stability), Different applications.		15 Hours
3	Unit III Thermoelectric Materials:		15 nours
	Fundamentals of thermoelectric effects), Thermoelectric Effect Thermoelectric devices, Heat Materials (Heat Conduction Electrons), Progress in Thermoelectric Materials,	icity (Seebeck, Peltier and Thomson s and Transport Properties, Basics of Conduction in Bulk Thermoelectric by Phonons, Heat Conduction by Thermoelectric Materials (Bulk Nanostructured Thermoelectric ermal Conductivities in Bulk and rmoelectric Devices.	
4	Unit IV		15 Hours
	reaction kinetics, Charge and Different types of Fuel Cells polymer electrolyte membrane (AFC), molten carbonate fuel of (SOFC).Concepts of Electron	ics of Fuel Cells, Basic principles and Mass transport, Cell characterization, (Phosphoric acid fuel cell (PAFC), fuel cell (PEMFC), alkaline fuel cell cell (MCFC) and solid-oxide fuel cell etrocatalysis and Photocatalysis, a kinetics for water splitting, Basic	

brication and measurement techniques. ggested Reading:
ggesteu Reauing.
1. Solar Photovoltaics: Fundamentals, Technologies Applications,
Book by Chetan Singh Solanki 3 rd Edition 2009 Phi
Publication.
2. Solar Energy: Fundamentals Applications Book by H. P
Garg.Tata McGraw-Hill Education, 2000.
3. Solar Energy: Principles of Thermal Collection Storage Book
bySuhasPurangSukhatme. D. Patranabis, Phi Learning Private Limited.
4. Nanomaterials in Advanced Batteries Supercapacitors, by
4. Nanomaterials in Advanced Batteries Supercapacitors, by Kenneth I. Ozoemena, Shaowei Chen.
5. Electrochemical Supercapacitors: Scientific Fundamentals
Technological Applications Book by Brian Evans Conway.
6. Thermoelectric Materials: AdvancesApplications Novel.by
Enrique Maciá Barber.
7. Thermoelectric Materials Devices.byStephen Beeby,Iris
Nhakumar, Neil M. White.
8. New Future Developments in Catalysis.by Steven L. Suib2019.
9. Non-Noble Metal Fuel Cell Catalysts. Editor(S) Zhongwei
Chen, Jean-Pol Dodelet, Jiujun Zhang Dodelet, First
Published:21 March 2014.
ourse Outcomes:
tudents will be able to understand the concept of Photovoltaics.
tudents will be aware of various tools and quality attributes required
atteries & Supercapacitors. They will also be able to select a
hermoelectric Materials based on requirement with static
haracteristics and measure the parameter

Guidelines for Project:

Every student will have to complete one project each in semester III semester IV with four credits (100 marks) each. Students can take one long project or two short projects. However, for one long project students have to submit two separate project reports / dissertation consisting of the problem definition, literature survey current status, objectives, methodology some preliminary experimental work in semester III. Actual experimental work, results analysis in semester IV with four credits each. Those who have opted for two separate projects will also have to submit two separate project reports at each examination. The project can be a theoretical or experimental project, related to advanced topic, electronic circuits, models, industrial project, training in a research institute, training of handling a sophisticated equipment etc.

Maximum three students can do a joint project. Each one of them will submit a separate project report with details/part only he/she has done. However, he/she can in brief (in a page one or two) mention in introduction section what other group members have done. In case of electronic projects, guide should not allow his/her students to use readymade electronic kits available in the market. The electronics project/models should be demonstrated during presentation of the project. In case a student takes training in a research institute/training of handling sophisticate equipment he/she should mention in a report what training he/she has got, which instruments he/she handled, their principle and operation etc. Each project will be of 100 marks with 50% by internal and 50% by external evaluation.

The project report should be file bound/spiral bound/hard bound and should have following format

Title Page/Cover Page Certificate Endorsed by Project Supervisor Head of Department Declaration Abstract of the Project Table of Contents List of Figures List of Tables Chapters of Content – Introduction and Objectives of the Project Experimental/Theoretical Methodology/Circuit/Model etc. details Results and Discussion if any Conclusions References

Evaluation by External Examiner will be Based on Following Criterion: (Each Semester)

Maximum Marks by External Examiner Maximum Marks by Internal Examiner/Guide Total Marks	: 50 Marks : 50 Marks : 100 Marks
Presentation	: 15 Marks
Depth of Knowledge in the Subject / Results and Discussions	: 10 Marks
Inclusion of Recent References	• • • • • • • • • • • • • • • • • • •
of a Project or Model Significance and Originality of the Study/Society Application	: 05 Marks
Experimental/Theoretical Methodology/Working Condition	: 10 Marks
Objectives/Plan of the Project	: 05 Marks
Literature Survey	: 05 Marks
Semester)	